本文整理汇总了Python中mmdet.datasets.CocoDataset方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.CocoDataset方法的具体用法?Python datasets.CocoDataset怎么用?Python datasets.CocoDataset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmdet.datasets
的用法示例。
在下文中一共展示了datasets.CocoDataset方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _dist_train
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
dist=True)
]
# put model on gpus
model = MMDistributedDataParallel(model.cuda())
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# register hooks
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataset_cfg = cfg.data.val
if isinstance(model.module, RPN):
# TODO: implement recall hooks for other datasets
runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg))
else:
dataset_type = getattr(datasets, val_dataset_cfg.type)
if issubclass(dataset_type, datasets.CocoDataset):
runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg))
else:
runner.register_hook(DistEvalmAPHook(val_dataset_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例2: build_divide_dataset
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def build_divide_dataset(cfg, part_1_ratio=0.5, seed=520):
"""Need to change `coco.getImgIds()` output, i.e.,
`self.imgs` in a COCO instance.
`self.imgs` is created by `self.dataset['images']`.
Thus, hacking `self.dataset['images']` when initializing a
COCO class.
"""
logging.info('Prepare datasets.')
data_type = cfg.train.type
if data_type == 'RepeatDataset':
train_cfg = cfg.train.dataset
else:
train_cfg = cfg.train
assert train_cfg.pop('type') == 'CocoDataset', 'Only support COCO.'
annotations = mmcv.load(train_cfg.pop('ann_file'))
images = annotations.pop('images')
part_1_annotations = copy.copy(annotations)
part_2_annotations = copy.copy(annotations)
part_1_length = int(part_1_ratio * len(images))
if seed is not None:
random.seed(seed)
random.shuffle(images)
part_1_images = images[:part_1_length]
part_2_images = images[part_1_length:]
part_1_annotations['images'] = part_1_images
part_2_annotations['images'] = part_2_images
part_1_coco = COCOFromDict(part_1_annotations)
part_2_coco = COCOFromDict(part_2_annotations)
part_1_dataset = InitDatasetFromCOCOClass(**train_cfg, ann_file=part_1_coco)
part_2_dataset = InitDatasetFromCOCOClass(**cfg.val, ann_file=part_2_coco)
if data_type == 'RepeatDataset':
part_1_dataset = RepeatDataset(part_1_dataset, cfg.train.times)
logging.info(f'Finished preparing datasets.')
return part_1_dataset, part_2_dataset
示例3: _dist_train
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
data_loaders = [
build_dataloader(
dataset,
cfg.data.imgs_per_gpu,
cfg.data.workers_per_gpu,
dist=True)
]
# put model on gpus
model = MMDistributedDataParallel(model.cuda())
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
**fp16_cfg)
else:
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataset_cfg = cfg.data.val
eval_cfg = cfg.get('evaluation', {})
if isinstance(model.module, RPN):
# TODO: implement recall hooks for other datasets
runner.register_hook(
CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
else:
dataset_type = getattr(datasets, val_dataset_cfg.type)
if issubclass(dataset_type, datasets.CocoDataset):
runner.register_hook(
CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
else:
runner.register_hook(
DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例4: _dist_train
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
data_loaders = [
build_dataloader(
ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
for ds in dataset
]
# put model on gpus
model = MMDistributedDataParallel(model.cuda())
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
**fp16_cfg)
else:
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataset_cfg = cfg.data.val
eval_cfg = cfg.get('evaluation', {})
if isinstance(model.module, RPN):
# TODO: implement recall hooks for other datasets
runner.register_hook(
CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
else:
dataset_type = DATASETS.get(val_dataset_cfg.type)
if issubclass(dataset_type, datasets.CocoDataset):
runner.register_hook(
CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
else:
runner.register_hook(
DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例5: _dist_train
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
data_loaders = [
build_dataloader(
ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
for ds in dataset
]
# put model on gpus
model = MMDistributedDataParallel(model.cuda())
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
**fp16_cfg)
else:
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataset_cfg = cfg.data.val
eval_cfg = cfg.get('evaluation', {})
if isinstance(model.module, RPN):
# TODO: implement recall hooks for other datasets
runner.register_hook(
CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
else:
dataset_type = DATASETS.get(val_dataset_cfg.type)
if issubclass(dataset_type, datasets.CocoDataset):
runner.register_hook(
CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
else:
runner.register_hook(
DistEvalF1Hook(val_dataset_cfg, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
示例6: _dist_train
# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
data_loaders = [
build_dataloader(
ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
for ds in dataset
]
# put model on gpus
model = MMDistributedDataParallel(model.cuda())
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
cfg.log_level)
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
**fp16_cfg)
else:
optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config)
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataset_cfg = cfg.data.val
eval_cfg = cfg.get('evaluation', {})
if isinstance(model.module, (RPN, CascadeRPN)):
# TODO: implement recall hooks for other datasets
runner.register_hook(
CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
else:
dataset_type = DATASETS.get(val_dataset_cfg.type)
if issubclass(dataset_type, datasets.CocoDataset):
runner.register_hook(
CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
else:
runner.register_hook(
DistEvalmAPHook(val_dataset_cfg, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)