当前位置: 首页>>代码示例>>Python>>正文


Python datasets.CocoDataset方法代码示例

本文整理汇总了Python中mmdet.datasets.CocoDataset方法的典型用法代码示例。如果您正苦于以下问题:Python datasets.CocoDataset方法的具体用法?Python datasets.CocoDataset怎么用?Python datasets.CocoDataset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mmdet.datasets的用法示例。


在下文中一共展示了datasets.CocoDataset方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _dist_train

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
    ]
    # put model on gpus
    model = MMDistributedDataParallel(model.cuda())
    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
                    cfg.log_level)
    # register hooks
    optimizer_config = DistOptimizerHook(**cfg.optimizer_config)
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset_cfg = cfg.data.val
        if isinstance(model.module, RPN):
            # TODO: implement recall hooks for other datasets
            runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg))
        else:
            dataset_type = getattr(datasets, val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg))
            else:
                runner.register_hook(DistEvalmAPHook(val_dataset_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs) 
开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:40,代码来源:train.py

示例2: build_divide_dataset

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def build_divide_dataset(cfg, part_1_ratio=0.5, seed=520):
    """Need to change `coco.getImgIds()` output, i.e., 
    `self.imgs` in a COCO instance. 
    `self.imgs` is created by `self.dataset['images']`.
    Thus, hacking `self.dataset['images']` when initializing a 
    COCO class.
    """
    logging.info('Prepare datasets.')
    data_type = cfg.train.type
    if data_type == 'RepeatDataset':
        train_cfg = cfg.train.dataset
    else:
        train_cfg = cfg.train
    assert train_cfg.pop('type') == 'CocoDataset', 'Only support COCO.'
    annotations = mmcv.load(train_cfg.pop('ann_file'))
    images = annotations.pop('images')
    part_1_annotations = copy.copy(annotations)
    part_2_annotations = copy.copy(annotations)

    part_1_length = int(part_1_ratio * len(images))
    if seed is not None:
        random.seed(seed)
        random.shuffle(images)
    part_1_images = images[:part_1_length]
    part_2_images = images[part_1_length:]

    part_1_annotations['images'] = part_1_images
    part_2_annotations['images'] = part_2_images

    part_1_coco = COCOFromDict(part_1_annotations)
    part_2_coco = COCOFromDict(part_2_annotations)
    part_1_dataset = InitDatasetFromCOCOClass(**train_cfg, ann_file=part_1_coco)
    part_2_dataset = InitDatasetFromCOCOClass(**cfg.val, ann_file=part_2_coco)
    if data_type == 'RepeatDataset':
        part_1_dataset = RepeatDataset(part_1_dataset, cfg.train.times)
    logging.info(f'Finished preparing datasets.')

    return part_1_dataset, part_2_dataset 
开发者ID:JaminFong,项目名称:FNA,代码行数:40,代码来源:divide_dataset.py

示例3: _dist_train

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    data_loaders = [
        build_dataloader(
            dataset,
            cfg.data.imgs_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True)
    ]
    # put model on gpus
    model = MMDistributedDataParallel(model.cuda())

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
                    cfg.log_level)

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset_cfg = cfg.data.val
        eval_cfg = cfg.get('evaluation', {})
        if isinstance(model.module, RPN):
            # TODO: implement recall hooks for other datasets
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
        else:
            dataset_type = getattr(datasets, val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
            else:
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs) 
开发者ID:xvjiarui,项目名称:GCNet,代码行数:53,代码来源:train.py

示例4: _dist_train

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
    ]
    # put model on gpus
    model = MMDistributedDataParallel(model.cuda())

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
                    cfg.log_level)

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset_cfg = cfg.data.val
        eval_cfg = cfg.get('evaluation', {})
        if isinstance(model.module, RPN):
            # TODO: implement recall hooks for other datasets
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
        else:
            dataset_type = DATASETS.get(val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
            else:
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs) 
开发者ID:xieenze,项目名称:PolarMask,代码行数:52,代码来源:train.py

示例5: _dist_train

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
    ]
    # put model on gpus
    model = MMDistributedDataParallel(model.cuda())

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
                    cfg.log_level)

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset_cfg = cfg.data.val
        eval_cfg = cfg.get('evaluation', {})
        if isinstance(model.module, RPN):
            # TODO: implement recall hooks for other datasets
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
        else:
            dataset_type = DATASETS.get(val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
            else:
                runner.register_hook(
                    DistEvalF1Hook(val_dataset_cfg, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs) 
开发者ID:tascj,项目名称:kaggle-kuzushiji-recognition,代码行数:52,代码来源:train.py

示例6: _dist_train

# 需要导入模块: from mmdet import datasets [as 别名]
# 或者: from mmdet.datasets import CocoDataset [as 别名]
def _dist_train(model, dataset, cfg, validate=False):
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True)
        for ds in dataset
    ]
    # put model on gpus
    model = MMDistributedDataParallel(model.cuda())

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(model, batch_processor, optimizer, cfg.work_dir,
                    cfg.log_level)

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset_cfg = cfg.data.val
        eval_cfg = cfg.get('evaluation', {})
        if isinstance(model.module, (RPN, CascadeRPN)):
            # TODO: implement recall hooks for other datasets
            runner.register_hook(
                CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg))
        else:
            dataset_type = DATASETS.get(val_dataset_cfg.type)
            if issubclass(dataset_type, datasets.CocoDataset):
                runner.register_hook(
                    CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg))
            else:
                runner.register_hook(
                    DistEvalmAPHook(val_dataset_cfg, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs) 
开发者ID:thangvubk,项目名称:Cascade-RPN,代码行数:52,代码来源:train.py


注:本文中的mmdet.datasets.CocoDataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。