本文整理汇总了Python中mmdet.core.multiclass_nms方法的典型用法代码示例。如果您正苦于以下问题:Python core.multiclass_nms方法的具体用法?Python core.multiclass_nms怎么用?Python core.multiclass_nms使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmdet.core
的用法示例。
在下文中一共展示了core.multiclass_nms方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_det_bboxes
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def get_det_bboxes(self,
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None):
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
scores = F.softmax(cls_score, dim=1) if cls_score is not None else None
if bbox_pred is not None:
bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
self.target_stds, img_shape)
else:
bboxes = rois[:, 1:]
# TODO: add clip here
if rescale:
bboxes /= scale_factor
if cfg is None:
return bboxes, scores
else:
det_bboxes, det_labels = multiclass_nms(bboxes, scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
示例2: aug_test
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def aug_test(self, imgs, img_metas, rescale=False):
# recompute feats to save memory
feats = self.extract_feats(imgs)
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
# TODO more flexible
outs = self.bbox_head(x)
bbox_inputs = outs + (img_meta, self.test_cfg, False, False)
det_bboxes, det_scores = self.bbox_head.get_bboxes(*bbox_inputs)[0]
aug_bboxes.append(det_bboxes)
aug_scores.append(det_scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = self.merge_aug_results(
aug_bboxes, aug_scores, img_metas)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
self.test_cfg.score_thr,
self.test_cfg.nms,
self.test_cfg.max_per_img)
if rescale:
_det_bboxes = det_bboxes
else:
_det_bboxes = det_bboxes.clone()
_det_bboxes[:, :4] *= img_metas[0][0]['scale_factor']
bbox_results = bbox2result(_det_bboxes, det_labels,
self.bbox_head.num_classes)
return bbox_results
示例3: aug_test
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def aug_test(self, imgs, img_metas, rescale=False):
# recompute feats to save memory
feats = self.extract_feats(imgs)
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
outs = self.bbox_head(x)
bbox_inputs = outs + (img_meta, self.test_cfg, False, False)
det_bboxes, det_scores = self.bbox_head.get_bboxes(*bbox_inputs)[0]
aug_bboxes.append(det_bboxes)
aug_scores.append(det_scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = self.merge_aug_results(
aug_bboxes, aug_scores, img_metas)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
self.test_cfg.score_thr,
self.test_cfg.nms,
self.test_cfg.max_per_img)
if rescale:
_det_bboxes = det_bboxes
else:
_det_bboxes = det_bboxes.clone()
_det_bboxes[:, :4] *= img_metas[0][0]['scale_factor']
bbox_results = bbox2result(_det_bboxes, det_labels,
self.bbox_head.num_classes)
return bbox_results
示例4: _get_bboxes_single
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
featmap_sizes,
point_list,
img_shape,
scale_factor,
cfg,
rescale=False):
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(point_list)
det_bboxes = []
det_scores = []
for cls_score, bbox_pred, featmap_size, stride, base_len, (y, x) \
in zip(cls_scores, bbox_preds, featmap_sizes, self.strides,
self.base_edge_list, point_list):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).exp()
nms_pre = cfg.get('nms_pre', -1)
if (nms_pre > 0) and (scores.shape[0] > nms_pre):
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
y = y[topk_inds]
x = x[topk_inds]
x1 = (stride * x - base_len * bbox_pred[:, 0]).\
clamp(min=0, max=img_shape[1] - 1)
y1 = (stride * y - base_len * bbox_pred[:, 1]).\
clamp(min=0, max=img_shape[0] - 1)
x2 = (stride * x + base_len * bbox_pred[:, 2]).\
clamp(min=0, max=img_shape[1] - 1)
y2 = (stride * y + base_len * bbox_pred[:, 3]).\
clamp(min=0, max=img_shape[0] - 1)
bboxes = torch.stack([x1, y1, x2, y2], -1)
det_bboxes.append(bboxes)
det_scores.append(scores)
det_bboxes = torch.cat(det_bboxes)
if rescale:
det_bboxes /= det_bboxes.new_tensor(scale_factor)
det_scores = torch.cat(det_scores)
padding = det_scores.new_zeros(det_scores.shape[0], 1)
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
det_scores = torch.cat([det_scores, padding], dim=1)
det_bboxes, det_labels = multiclass_nms(det_bboxes, det_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
示例5: aug_test
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def aug_test(self, imgs, img_metas, rescale=False):
"""Test function with test time augmentation.
Args:
imgs (list[torch.Tensor]): List of multiple images
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[ndarray]: bbox results of each class
"""
# recompute feats to save memory
feats = self.extract_feats(imgs)
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
outs = self.bbox_head(x)
bbox_inputs = outs + (img_metas, self.test_cfg, False, False)
det_bboxes, det_scores = self.bbox_head.get_bboxes(*bbox_inputs)[0]
aug_bboxes.append(det_bboxes)
aug_scores.append(det_scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = self.merge_aug_results(
aug_bboxes, aug_scores, img_metas)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
self.test_cfg.score_thr,
self.test_cfg.nms,
self.test_cfg.max_per_img)
if rescale:
_det_bboxes = det_bboxes
else:
_det_bboxes = det_bboxes.clone()
_det_bboxes[:, :4] *= det_bboxes.new_tensor(
img_metas[0][0]['scale_factor'])
bbox_results = bbox2result(_det_bboxes, det_labels,
self.bbox_head.num_classes)
return bbox_results
示例6: get_bboxes_single
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def get_bboxes_single(self,
cls_scores,
bbox_preds,
centernesses,
mlvl_points,
img_shape,
scale_factor,
cfg,
rescale=False):
assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
mlvl_bboxes = []
mlvl_scores = []
mlvl_centerness = []
for cls_score, bbox_pred, centerness, points in zip(
cls_scores, bbox_preds, centernesses, mlvl_points):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).sigmoid()
centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
max_scores, _ = (scores * centerness[:, None]).max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
points = points[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
centerness = centerness[topk_inds]
bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_centerness.append(centerness)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
mlvl_centerness = torch.cat(mlvl_centerness)
det_bboxes, det_labels = multiclass_nms(
mlvl_bboxes,
mlvl_scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img,
score_factors=mlvl_centerness)
return det_bboxes, det_labels
示例7: get_bboxes_single
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def get_bboxes_single(self,
cls_scores,
bbox_preds,
featmap_sizes,
point_list,
img_shape,
scale_factor,
cfg,
rescale=False):
assert len(cls_scores) == len(bbox_preds) == len(point_list)
det_bboxes = []
det_scores = []
for cls_score, bbox_pred, featmap_size, stride, base_len, (y, x) \
in zip(cls_scores, bbox_preds, featmap_sizes, self.strides,
self.base_edge_list, point_list):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).exp()
nms_pre = cfg.get('nms_pre', -1)
if (nms_pre > 0) and (scores.shape[0] > nms_pre):
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
y = y[topk_inds]
x = x[topk_inds]
x1 = (stride * x - base_len * bbox_pred[:, 0]).\
clamp(min=0, max=img_shape[1] - 1)
y1 = (stride * y - base_len * bbox_pred[:, 1]).\
clamp(min=0, max=img_shape[0] - 1)
x2 = (stride * x + base_len * bbox_pred[:, 2]).\
clamp(min=0, max=img_shape[1] - 1)
y2 = (stride * y + base_len * bbox_pred[:, 3]).\
clamp(min=0, max=img_shape[0] - 1)
bboxes = torch.stack([x1, y1, x2, y2], -1)
det_bboxes.append(bboxes)
det_scores.append(scores)
det_bboxes = torch.cat(det_bboxes)
if rescale:
det_bboxes /= det_bboxes.new_tensor(scale_factor)
det_scores = torch.cat(det_scores)
padding = det_scores.new_zeros(det_scores.shape[0], 1)
det_scores = torch.cat([padding, det_scores], dim=1)
det_bboxes, det_labels = multiclass_nms(det_bboxes, det_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
示例8: get_bboxes_single
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import multiclass_nms [as 别名]
def get_bboxes_single(self,
cls_scores,
bbox_preds,
featmap_sizes,
point_list,
img_shape,
scale_factor,
cfg,
rescale=False, debug=False):
assert len(cls_scores) == len(bbox_preds) == len(point_list)
det_bboxes = []
det_scores = []
for cls_score, bbox_pred, featmap_size, stride, base_len, (y, x) in zip(
cls_scores, bbox_preds, featmap_sizes, self.strides, self.base_edge_list, point_list):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).exp()
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
y = y[topk_inds]
x = x[topk_inds]
x1 = (stride * x - base_len * bbox_pred[:, 0]).clamp(min=0, max=img_shape[1] - 1)
y1 = (stride * y - base_len * bbox_pred[:, 1]).clamp(min=0, max=img_shape[0] - 1)
x2 = (stride * x + base_len * bbox_pred[:, 2]).clamp(min=0, max=img_shape[1] - 1)
y2 = (stride * y + base_len * bbox_pred[:, 3]).clamp(min=0, max=img_shape[0] - 1)
bboxes = torch.stack([x1, y1, x2, y2], -1)
det_bboxes.append(bboxes)
det_scores.append(scores)
det_bboxes = torch.cat(det_bboxes)
if rescale:
det_bboxes /= det_bboxes.new_tensor(scale_factor)
det_scores = torch.cat(det_scores)
padding = det_scores.new_zeros(det_scores.shape[0], 1)
det_scores = torch.cat([padding, det_scores], dim=1)
if debug:
det_bboxes, det_labels = multiclass_nms(
det_bboxes,
det_scores,
cfg['score_thr'],
cfg['nms'],
cfg['max_per_img'])
else:
det_bboxes, det_labels = multiclass_nms(
det_bboxes,
det_scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels