本文整理汇总了Python中mmdet.core.delta2bbox方法的典型用法代码示例。如果您正苦于以下问题:Python core.delta2bbox方法的具体用法?Python core.delta2bbox怎么用?Python core.delta2bbox使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmdet.core
的用法示例。
在下文中一共展示了core.delta2bbox方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_det_bboxes
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import delta2bbox [as 别名]
def get_det_bboxes(self,
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None):
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
scores = F.softmax(cls_score, dim=1) if cls_score is not None else None
if bbox_pred is not None:
bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
self.target_stds, img_shape)
else:
bboxes = rois[:, 1:]
# TODO: add clip here
if rescale:
bboxes /= scale_factor
if cfg is None:
return bboxes, scores
else:
det_bboxes, det_labels = multiclass_nms(bboxes, scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
示例2: regress_by_class
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import delta2bbox [as 别名]
def regress_by_class(self, rois, label, bbox_pred, img_meta):
"""Regress the bbox for the predicted class. Used in Cascade R-CNN.
Args:
rois (Tensor): shape (n, 4) or (n, 5)
label (Tensor): shape (n, )
bbox_pred (Tensor): shape (n, 4*(#class+1)) or (n, 4)
img_meta (dict): Image meta info.
Returns:
Tensor: Regressed bboxes, the same shape as input rois.
"""
assert rois.size(1) == 4 or rois.size(1) == 5
if not self.reg_class_agnostic:
label = label * 4
inds = torch.stack((label, label + 1, label + 2, label + 3), 1)
bbox_pred = torch.gather(bbox_pred, 1, inds)
assert bbox_pred.size(1) == 4
if rois.size(1) == 4:
new_rois = delta2bbox(rois, bbox_pred, self.target_means,
self.target_stds, img_meta['img_shape'])
else:
bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
self.target_stds, img_meta['img_shape'])
new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)
return new_rois
示例3: get_bboxes_single
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import delta2bbox [as 别名]
def get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False):
mlvl_proposals = []
for idx in range(len(cls_scores)):
rpn_cls_score = cls_scores[idx]
rpn_bbox_pred = bbox_preds[idx]
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
anchors = mlvl_anchors[idx]
rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
if self.use_sigmoid_cls:
rpn_cls_score = rpn_cls_score.reshape(-1)
scores = rpn_cls_score.sigmoid()
else:
rpn_cls_score = rpn_cls_score.reshape(-1, 2)
scores = rpn_cls_score.softmax(dim=1)[:, 1]
rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre:
_, topk_inds = scores.topk(cfg.nms_pre)
rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
anchors = anchors[topk_inds, :]
scores = scores[topk_inds]
proposals = delta2bbox(anchors, rpn_bbox_pred, self.target_means,
self.target_stds, img_shape)
if cfg.min_bbox_size > 0:
w = proposals[:, 2] - proposals[:, 0] + 1
h = proposals[:, 3] - proposals[:, 1] + 1
valid_inds = torch.nonzero((w >= cfg.min_bbox_size) &
(h >= cfg.min_bbox_size)).squeeze()
proposals = proposals[valid_inds, :]
scores = scores[valid_inds]
proposals = torch.cat([proposals, scores.unsqueeze(-1)], dim=-1)
proposals, _ = nms(proposals, cfg.nms_thr)
proposals = proposals[:cfg.nms_post, :]
mlvl_proposals.append(proposals)
proposals = torch.cat(mlvl_proposals, 0)
if cfg.nms_across_levels:
proposals, _ = nms(proposals, cfg.nms_thr)
proposals = proposals[:cfg.max_num, :]
else:
scores = proposals[:, 4]
num = min(cfg.max_num, proposals.shape[0])
_, topk_inds = scores.topk(num)
proposals = proposals[topk_inds, :]
return proposals
示例4: get_bboxes_single_auxiliary
# 需要导入模块: from mmdet import core [as 别名]
# 或者: from mmdet.core import delta2bbox [as 别名]
def get_bboxes_single_auxiliary(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False):
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, anchors in zip(cls_scores, bbox_preds,
mlvl_anchors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
cls_score = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
scores = cls_score.softmax(-1)
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
if self.use_sigmoid_cls:
max_scores, _ = scores.max(dim=1)
else:
max_scores, _ = scores[:, 1:].max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = delta2bbox(anchors, bbox_pred, self.target_means,
self.target_stds, img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
if self.use_sigmoid_cls:
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
det_bboxes, det_labels = multiclass_nms(
mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img)
return det_bboxes