当前位置: 首页>>代码示例>>Python>>正文


Python parallel.DataContainer方法代码示例

本文整理汇总了Python中mmcv.parallel.DataContainer方法的典型用法代码示例。如果您正苦于以下问题:Python parallel.DataContainer方法的具体用法?Python parallel.DataContainer怎么用?Python parallel.DataContainer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mmcv.parallel的用法示例。


在下文中一共展示了parallel.DataContainer方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __call__

# 需要导入模块: from mmcv import parallel [as 别名]
# 或者: from mmcv.parallel import DataContainer [as 别名]
def __call__(self, results):
        """Call function to convert data in results to
        :obj:`mmcv.DataContainer`.

        Args:
            results (dict): Result dict contains the data to convert.

        Returns:
            dict: The result dict contains the data converted to
                :obj:`mmcv.DataContainer`.
        """

        for field in self.fields:
            field = field.copy()
            key = field.pop('key')
            results[key] = DC(results[key], **field)
        return results 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:19,代码来源:formating.py

示例2: __call__

# 需要导入模块: from mmcv import parallel [as 别名]
# 或者: from mmcv.parallel import DataContainer [as 别名]
def __call__(self, results):
        for field in self.fields:
            field = field.copy()
            key = field.pop('key')
            results[key] = DC(results[key], **field)
        return results 
开发者ID:tascj,项目名称:kaggle-kuzushiji-recognition,代码行数:8,代码来源:formating.py

示例3: prepare_test_img

# 需要导入模块: from mmcv import parallel [as 别名]
# 或者: from mmcv.parallel import DataContainer [as 别名]
def prepare_test_img(self, idx):
        """Prepare an image for testing (multi-scale and flipping)"""
        img_info = self.img_infos[idx]
        img = mmcv.imread(osp.join(self.img_prefix, img_info['filename']))
        if self.proposals is not None:
            proposal = self.proposals[idx][:self.num_max_proposals]
            if not (proposal.shape[1] == 4 or proposal.shape[1] == 5):
                raise AssertionError(
                    'proposals should have shapes (n, 4) or (n, 5), '
                    'but found {}'.format(proposal.shape))
        else:
            proposal = None

        def prepare_single(img, scale, flip, proposal=None):
            _img, img_shape, pad_shape, scale_factor = self.img_transform(
                img, scale, flip, keep_ratio=self.resize_keep_ratio)
            _img = to_tensor(_img)
            _img_meta = dict(
                ori_shape=(img_info['height'], img_info['width'], 3),
                img_shape=img_shape,
                pad_shape=pad_shape,
                scale_factor=scale_factor,
                flip=flip)
            if proposal is not None:
                if proposal.shape[1] == 5:
                    score = proposal[:, 4, None]
                    proposal = proposal[:, :4]
                else:
                    score = None
                _proposal = self.bbox_transform(proposal, img_shape,
                                                scale_factor, flip)
                _proposal = np.hstack(
                    [_proposal, score]) if score is not None else _proposal
                _proposal = to_tensor(_proposal)
            else:
                _proposal = None
            return _img, _img_meta, _proposal

        imgs = []
        img_metas = []
        proposals = []
        for scale in self.img_scales:
            _img, _img_meta, _proposal = prepare_single(
                img, scale, False, proposal)
            imgs.append(_img)
            img_metas.append(DC(_img_meta, cpu_only=True))
            proposals.append(_proposal)
            if self.flip_ratio > 0:
                _img, _img_meta, _proposal = prepare_single(
                    img, scale, True, proposal)
                imgs.append(_img)
                img_metas.append(DC(_img_meta, cpu_only=True))
                proposals.append(_proposal)
        data = dict(img=imgs, img_meta=img_metas)
        if self.proposals is not None:
            data['proposals'] = proposals
        return data 
开发者ID:xvjiarui,项目名称:GCNet,代码行数:59,代码来源:custom.py


注:本文中的mmcv.parallel.DataContainer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。