本文整理汇总了Python中mmcv.imresize方法的典型用法代码示例。如果您正苦于以下问题:Python mmcv.imresize方法的具体用法?Python mmcv.imresize怎么用?Python mmcv.imresize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmcv
的用法示例。
在下文中一共展示了mmcv.imresize方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _resize_img
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def _resize_img(self, results):
"""Resize images with ``results['scale']``."""
for key in results.get('img_fields', ['img']):
if self.keep_ratio:
img, scale_factor = mmcv.imrescale(
results[key], results['scale'], return_scale=True)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results[key].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results[key], results['scale'], return_scale=True)
results[key] = img
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
results['img_shape'] = img.shape
# in case that there is no padding
results['pad_shape'] = img.shape
results['scale_factor'] = scale_factor
results['keep_ratio'] = self.keep_ratio
示例2: crop_and_resize
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def crop_and_resize(self,
bboxes,
out_shape,
inds,
device,
interpolation='bilinear'):
"""Crop and resize masks by the given bboxes.
This function is mainly used in mask targets computation.
It firstly align mask to bboxes by assigned_inds, then crop mask by the
assigned bbox and resize to the size of (mask_h, mask_w)
Args:
bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
out_shape (tuple[int]): Target (h, w) of resized mask
inds (ndarray): Indexes to assign masks to each bbox
device (str): Device of bboxes
interpolation (str): See `mmcv.imresize`
Return:
BaseInstanceMasks: the cropped and resized masks.
"""
pass
示例3: __call__
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def __call__(self, img, scale, flip=False, keep_ratio=True):
if keep_ratio:
img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
else:
img, w_scale, h_scale = mmcv.imresize(
img, scale, return_scale=True)
scale_factor = np.array(
[w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
img_shape = img.shape
img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
if flip:
img = mmcv.imflip(img)
if self.size_divisor is not None:
img = mmcv.impad_to_multiple(img, self.size_divisor)
pad_shape = img.shape
else:
pad_shape = img_shape
img = img.transpose(2, 0, 1)
return img, img_shape, pad_shape, scale_factor
示例4: mask_target_single
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
mask_size = cfg.mask_size
num_pos = pos_proposals.size(0)
mask_targets = []
if num_pos > 0:
proposals_np = pos_proposals.cpu().numpy()
pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
for i in range(num_pos):
# import pdb
# pdb.set_trace()
gt_mask = gt_masks[pos_assigned_gt_inds[i]]
bbox = proposals_np[i, :].astype(np.int32)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1 + 1, 1)
h = np.maximum(y2 - y1 + 1, 1)
# mask is uint8 both before and after resizing
target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
(mask_size, mask_size))
mask_targets.append(target)
mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
pos_proposals.device)
else:
mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
return mask_targets
示例5: mask_target_single
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
mask_size = cfg.mask_size
num_pos = pos_proposals.size(0)
mask_targets = []
if num_pos > 0:
proposals_np = pos_proposals.cpu().numpy()
pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
for i in range(num_pos):
gt_mask = gt_masks[pos_assigned_gt_inds[i]]
bbox = proposals_np[i, :].astype(np.int32)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1 + 1, 1)
h = np.maximum(y2 - y1 + 1, 1)
# mask is uint8 both before and after resizing
target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
(mask_size, mask_size))
mask_targets.append(target)
mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
pos_proposals.device)
else:
mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
return mask_targets
示例6: test_imresize
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def test_imresize(self):
resized_img = mmcv.imresize(self.img, (1000, 600))
assert resized_img.shape == (600, 1000, 3)
resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
True)
assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
and h_scale == 2.0)
resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
assert id(resized_img_dst) == id(resized_img)
assert_array_equal(resized_img_dst,
mmcv.imresize(self.img, (1000, 600)))
for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
resized_img = mmcv.imresize(
self.img, (1000, 600), interpolation=mode)
assert resized_img.shape == (600, 1000, 3)
示例7: __call__
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def __call__(self, img, scale, flip=False, keep_ratio=True):
if keep_ratio:
img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
else:
img, w_scale, h_scale = mmcv.imresize(
img, scale, return_scale=True)
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
img_shape = img.shape
img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
if flip:
img = mmcv.imflip(img)
if self.size_divisor is not None:
img = mmcv.impad_to_multiple(img, self.size_divisor)
pad_shape = img.shape
else:
pad_shape = img_shape
img = img.transpose(2, 0, 1)
return img, img_shape, pad_shape, scale_factor
示例8: mask_target_single
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
mask_size = _pair(cfg.mask_size)
num_pos = pos_proposals.size(0)
mask_targets = []
if num_pos > 0:
proposals_np = pos_proposals.cpu().numpy()
pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
for i in range(num_pos):
gt_mask = gt_masks[pos_assigned_gt_inds[i]]
bbox = proposals_np[i, :].astype(np.int32)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1 + 1, 1)
h = np.maximum(y2 - y1 + 1, 1)
# mask is uint8 both before and after resizing
# mask_size (h, w) to (w, h)
target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
mask_size[::-1])
mask_targets.append(target)
mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
pos_proposals.device)
else:
mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
return mask_targets
示例9: __call__
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def __call__(self, results):
if results['keep_ratio']:
gt_seg = mmcv.imrescale(
results['gt_semantic_seg'],
results['scale'],
interpolation='nearest')
else:
gt_seg = mmcv.imresize(
results['gt_semantic_seg'],
results['scale'],
interpolation='nearest')
if results['flip']:
gt_seg = mmcv.imflip(gt_seg)
if gt_seg.shape != results['pad_shape']:
gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
if self.scale_factor != 1:
gt_seg = mmcv.imrescale(
gt_seg, self.scale_factor, interpolation='nearest')
results['gt_semantic_seg'] = gt_seg
return results
示例10: _resize_masks
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import imresize [as 别名]
def _resize_masks(self, results):
for key in results.get('mask_fields', []):
if results[key] is None:
continue
if self.keep_ratio:
masks = [
mmcv.imrescale(
mask, results['scale_factor'], interpolation='nearest')
for mask in results[key]
]
else:
mask_size = (results['img_shape'][1], results['img_shape'][0])
masks = [
mmcv.imresize(mask, mask_size, interpolation='nearest')
for mask in results[key]
]
results[key] = masks