本文整理汇总了Python中mmcv.Config方法的典型用法代码示例。如果您正苦于以下问题:Python mmcv.Config方法的具体用法?Python mmcv.Config怎么用?Python mmcv.Config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mmcv
的用法示例。
在下文中一共展示了mmcv.Config方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: init_model
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def init_model(config, checkpoint=None, device='cuda:0'):
"""
Initialize a stereo model from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed stereo model.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
model = build_model(config)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例2: setUp
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def setUp(self):
config = dict(
data=dict(
test=dict(
type='KITTI-2015',
data_root='datasets/KITTI-2015/',
annfile='datasets/KITTI-2015/annotations/full_eval.json',
input_shape=[384, 1248],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
toRAM=False,
)
)
)
cfg = Config(config)
self.dataset = build_dataset(cfg, 'test')
import pdb
pdb.set_trace()
示例3: init_detector
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例4: _get_config_module
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
示例5: _get_detector_cfg
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def _get_detector_cfg(fname):
"""Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
import mmcv
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))
return model, train_cfg, test_cfg
示例6: init_detector
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例7: setUp
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def setUp(self):
config = dict(
data=dict(
train=dict(
type='FlyingChairs',
data_root='/home/youmin/data/OpticalFlow/FlyingChairs/',
annfile='/home/youmin/data/annotations/FlyingChairs/test.json',
input_shape=[256, 448],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
)
)
cfg = Config(config)
self.dataset = build_dataset(cfg, 'train')
示例8: setUp
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def setUp(self):
config = dict(
data=dict(
train=dict(
type='SceneFlow',
data_root='/home/youmin/data/StereoMatching/SceneFlow/',
annfile='/home/youmin/data/annotations/SceneFlow/cleanpass_train.json',
input_shape=[256, 512],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
)
)
cfg = Config(config)
self.dataset = build_dataset(cfg, 'train')
示例9: init_detector
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['classes']
else:
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
示例10: _get_detector_cfg
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def _get_detector_cfg(fname):
"""
Grab configs necessary to create a detector. These are deep copied to allow
for safe modification of parameters without influencing other tests.
"""
import mmcv
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))
return model, train_cfg, test_cfg
示例11: test_fcos_head_loss
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def test_fcos_head_loss():
"""Tests fcos head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
train_cfg = mmcv.Config(
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False))
# since Focal Loss is not supported on CPU
self = FCOSHead(
num_classes=4,
in_channels=1,
train_cfg=train_cfg,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
cls_scores, bbox_preds, centerness = self.forward(feat)
# Test that empty ground truth encourages the network to predict background
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(cls_scores, bbox_preds, centerness, gt_bboxes,
gt_labels, img_metas, gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_box_loss.item() == 0, (
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss should be nonzero for
# random inputs
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
one_gt_losses = self.loss(cls_scores, bbox_preds, centerness, gt_bboxes,
gt_labels, img_metas, gt_bboxes_ignore)
onegt_cls_loss = one_gt_losses['loss_cls']
onegt_box_loss = one_gt_losses['loss_bbox']
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
示例12: test_bbox_head_loss
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def test_bbox_head_loss():
"""Tests bbox head loss when truth is empty and non-empty."""
self = BBoxHead(in_channels=8, roi_feat_size=3)
# Dummy proposals
proposal_list = [
torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]),
]
target_cfg = mmcv.Config(dict(pos_weight=1))
# Test bbox loss when truth is empty
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes,
gt_labels)
bbox_targets = self.get_targets(sampling_results, gt_bboxes, gt_labels,
target_cfg)
labels, label_weights, bbox_targets, bbox_weights = bbox_targets
# Create dummy features "extracted" for each sampled bbox
num_sampled = sum(len(res.bboxes) for res in sampling_results)
rois = bbox2roi([res.bboxes for res in sampling_results])
dummy_feats = torch.rand(num_sampled, 8 * 3 * 3)
cls_scores, bbox_preds = self.forward(dummy_feats)
losses = self.loss(cls_scores, bbox_preds, rois, labels, label_weights,
bbox_targets, bbox_weights)
assert losses.get('loss_cls', 0) > 0, 'cls-loss should be non-zero'
assert losses.get('loss_bbox', 0) == 0, 'empty gt loss should be zero'
# Test bbox loss when truth is non-empty
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes,
gt_labels)
rois = bbox2roi([res.bboxes for res in sampling_results])
bbox_targets = self.get_targets(sampling_results, gt_bboxes, gt_labels,
target_cfg)
labels, label_weights, bbox_targets, bbox_weights = bbox_targets
# Create dummy features "extracted" for each sampled bbox
num_sampled = sum(len(res.bboxes) for res in sampling_results)
dummy_feats = torch.rand(num_sampled, 8 * 3 * 3)
cls_scores, bbox_preds = self.forward(dummy_feats)
losses = self.loss(cls_scores, bbox_preds, rois, labels, label_weights,
bbox_targets, bbox_weights)
assert losses.get('loss_cls', 0) > 0, 'cls-loss should be non-zero'
assert losses.get('loss_bbox', 0) > 0, 'box-loss should be non-zero'
示例13: testCase1
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def testCase1(self):
start_disp = -4
dilation = 2
alpha = 1.0
normalize = True
max_disp = 9
h, w = 2, 2
d = (max_disp + dilation - 1) // dilation
cfg = Config(dict(
model=dict(
disp_predictor=dict(
type=self.pred_type,
# the maximum disparity of disparity search range
max_disp=max_disp,
# disparity sample radius
radius=self.radius,
# the start disparity of disparity search range
start_disp=start_disp,
# the step between near disparity sample
dilation=dilation,
# the step between near disparity sample when local sampling
radius_dilation = self.radius_dilation,
# the temperature coefficient of soft argmin
alpha=alpha,
# whether normalize the estimated cost volume
normalize=normalize,
),
)
))
cfg.model.update(disp_predictor = kick_out_none_keys(cfg.model.disp_predictor))
cost = torch.ones(1, d, h, w).to(self.device)
cost.requires_grad = True
print('*' * 60)
print('Cost volume:')
print(cost)
disp_predictor = build_disp_predictor(cfg).to(self.device)
print(disp_predictor)
disp = disp_predictor(cost)
print('*' * 60)
print('Regressed disparity map :')
print(disp)
# soft argmin
if self.pred_type == 'DEFAULT':
print('*' * 60)
print('Test directly providing disparity samples')
end_disp = start_disp + max_disp - 1
# generate disparity samples
disp_samples = torch.linspace(start_disp, end_disp, d).repeat(1, h, w, 1).\
permute(0, 3, 1, 2).contiguous().to(cost.device)
disp = disp_predictor(cost, disp_samples)
print('Regressed disparity map :')
print(disp)
示例14: testCase1
# 需要导入模块: import mmcv [as 别名]
# 或者: from mmcv import Config [as 别名]
def testCase1(self):
max_disp = 5
start_disp = -2
dilation = 2
h, w = 3, 4
d = (max_disp + dilation - 1) // dilation
variance = 2
gtDisp = torch.rand(1, 1, h, w) * max_disp + start_disp
gtDisp = gtDisp.to(self.device)
cfg = Config(dict(
data = dict(
sparse = False,
),
model=dict(
losses=dict(
focal_loss=dict(
# the maximum disparity of disparity search range
max_disp=max_disp,
# the start disparity of disparity search range
start_disp=start_disp,
# the step between near disparity sample
dilation=dilation,
# weight for stereo focal loss with regard to other loss type
weight=1.0,
# weights for different scale loss
weights=(1.0),
# stereo focal loss focal coefficient
coefficient=5.0,
)
),
)
))
estCost = torch.ones(1, d, h, w).to(self.device)
estCost.requires_grad = True
print('\n \n Test Case 1:')
print('*' * 60)
print('Estimated Cost volume:')
print(estCost)
stereo_focal_loss_evaluator = make_focal_loss_evaluator(cfg)
print(stereo_focal_loss_evaluator)
print('*' * 60)
print(stereo_focal_loss_evaluator(estCost=estCost, gtDisp=gtDisp, variance=variance, disp_sample=None))