当前位置: 首页>>代码示例>>Python>>正文


Python misc.resnet方法代码示例

本文整理汇总了Python中misc.resnet方法的典型用法代码示例。如果您正苦于以下问题:Python misc.resnet方法的具体用法?Python misc.resnet怎么用?Python misc.resnet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在misc的用法示例。


在下文中一共展示了misc.resnet方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import misc [as 别名]
# 或者: from misc import resnet [as 别名]
def main(params):
  net = getattr(resnet, params['model'])()
  net.load_state_dict(torch.load(os.path.join(params['model_root'],params['model']+'.pth')))
  my_resnet = myResnet(net)
  my_resnet.cuda()
  my_resnet.eval()

  imgs = json.load(open(params['input_json'], 'r'))
  imgs = imgs['images']
  N = len(imgs)

  seed(123) # make reproducible

  dir_fc = params['output_dir']+'_fc'
  dir_att = params['output_dir']+'_att'
  if not os.path.isdir(dir_fc):
    os.mkdir(dir_fc)
  if not os.path.isdir(dir_att):
    os.mkdir(dir_att)

  for i,img in enumerate(imgs):
    # load the image
    I = skimage.io.imread(os.path.join(params['images_root'], img['filepath'], img['filename']))
    # handle grayscale input images
    if len(I.shape) == 2:
      I = I[:,:,np.newaxis]
      I = np.concatenate((I,I,I), axis=2)

    I = I.astype('float32')/255.0
    I = torch.from_numpy(I.transpose([2,0,1])).cuda()
    I = preprocess(I)
    with torch.no_grad():
      tmp_fc, tmp_att = my_resnet(I, params['att_size'])
    # write to pkl
    np.save(os.path.join(dir_fc, str(img['cocoid'])), tmp_fc.data.cpu().float().numpy())
    np.savez_compressed(os.path.join(dir_att, str(img['cocoid'])), feat=tmp_att.data.cpu().float().numpy())

    if i % 1000 == 0:
      print('processing %d/%d (%.2f%% done)' % (i, N, i*100.0/N))
  print('wrote ', params['output_dir']) 
开发者ID:ltguo19,项目名称:VSUA-Captioning,代码行数:42,代码来源:prepro_feats.py

示例2: main

# 需要导入模块: import misc [as 别名]
# 或者: from misc import resnet [as 别名]
def main(params):
  net = getattr(resnet, params['model'])()
  net.load_state_dict(torch.load(os.path.join(params['model_root'],params['model']+'.pth')))
  my_resnet = myResnet(net)
  my_resnet.cuda()
  my_resnet.eval()

  imgs = json.load(open(params['input_json'], 'r'))
  imgs = imgs['images']
  N = len(imgs)

  seed(123) # make reproducible

  dir_fc = params['output_dir']+'_fc'
  dir_att = params['output_dir']+'_att'
  if not os.path.isdir(dir_fc):
    os.mkdir(dir_fc)
  if not os.path.isdir(dir_att):
    os.mkdir(dir_att)

  for i,img in enumerate(imgs):
    # load the image
    I = skimage.io.imread(os.path.join(params['images_root'], img['filepath'], img['filename']))
    # handle grayscale input images
    if len(I.shape) == 2:
      I = I[:,:,np.newaxis]
      I = np.concatenate((I,I,I), axis=2)

    I = I.astype('float32')/255.0
    I = torch.from_numpy(I.transpose([2,0,1])).cuda()
    I = Variable(preprocess(I), volatile=True)
    tmp_fc, tmp_att = my_resnet(I, params['att_size'])
    # write to pkl
    np.save(os.path.join(dir_fc, str(img['cocoid'])), tmp_fc.data.cpu().float().numpy())
    np.savez_compressed(os.path.join(dir_att, str(img['cocoid'])), feat=tmp_att.data.cpu().float().numpy())

    if i % 1000 == 0:
      print('processing %d/%d (%.2f%% done)' % (i, N, i*100.0/N))
  print('wrote ', params['output_dir']) 
开发者ID:tgGuo15,项目名称:PriorImageCaption,代码行数:41,代码来源:prepro_feats.py

示例3: main

# 需要导入模块: import misc [as 别名]
# 或者: from misc import resnet [as 别名]
def main(params):
    assert params['feature_type'] in ['fc', 'conv', 'both']
    compute_fc = params['feature_type'] == 'fc' or params['feature_type'] == 'both'
    compute_conv = params['feature_type'] == 'conv' or params['feature_type'] == 'both'

    net = getattr(resnet, params['model'])()
    net.load_state_dict(torch.load(os.path.join(params['model_root'], params['model'] + '.pth')))
    my_resnet = myResnet(net)
    my_resnet.cuda()
    my_resnet.eval()

    if compute_fc:
        dir_fc = os.path.join(params['out_dir'], 'fc')
        if not os.path.exists(dir_fc):
            os.makedirs(dir_fc)
    if compute_conv:
        dir_conv = os.path.join(params['out_dir'], 'conv')
        if not os.path.exists(dir_conv):
            os.makedirs(dir_conv)

    for split in ['train', 'val', 'test']:
        count = 0
        if compute_fc and not os.path.exists(os.path.join(dir_fc, split)):
            os.makedirs(os.path.join(dir_fc, split))
        if compute_conv and not os.path.exists(os.path.join(dir_conv, split)):
            os.makedirs(os.path.join(dir_conv, split))

        files = glob.glob("{}/{}/*.jpg".format(params['img_dir'], split))
        start = time.time()
        for file in files:
            count += 1
            basename = os.path.basename(file)
            img_id = splitext(basename)[0]
            try:
                I = imread(file)
            except:
                I = np.zeros((224, 224, 3), 'float32')

            # handle grayscale input frames
            if len(I.shape) == 2:
                I = I[:, :, np.newaxis]
                I = np.concatenate((I, I, I), axis=2)

            I = I.astype('float32') / 255.0
            I = torch.from_numpy(I.transpose([2, 0, 1])).cuda()
            I = Variable(preprocess(I), volatile=True)
            tmp_fc, tmp_conv = my_resnet(I, params['att_size'])

            # write to pkl
            if compute_fc:
                np.save(os.path.join(dir_fc, split, img_id), tmp_fc.data.cpu().float().numpy())
            if compute_conv:
                np.savez_compressed(os.path.join(dir_conv, split, img_id), tmp_conv.data.cpu().float().numpy())

            if count % 100 == 0:
                print('processing {} set -- {}/{} {:.3}%, time used: {}s'.format(split, count, len(files),
                                                                                 count * 100.0 / len(files),
                                                                                 time.time() - start))
                start = time.time() 
开发者ID:eric-xw,项目名称:AREL,代码行数:61,代码来源:extract_features.py


注:本文中的misc.resnet方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。