本文整理汇总了Python中misc.adjust_dynamic_range方法的典型用法代码示例。如果您正苦于以下问题:Python misc.adjust_dynamic_range方法的具体用法?Python misc.adjust_dynamic_range怎么用?Python misc.adjust_dynamic_range使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类misc
的用法示例。
在下文中一共展示了misc.adjust_dynamic_range方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: process_reals
# 需要导入模块: import misc [as 别名]
# 或者: from misc import adjust_dynamic_range [as 别名]
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
with tf.name_scope('ProcessReals'):
with tf.name_scope('DynamicRange'):
x = tf.cast(x, tf.float32)
x = misc.adjust_dynamic_range(x, drange_data, drange_net)
if mirror_augment:
with tf.name_scope('MirrorAugment'):
s = tf.shape(x)
mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
mask = tf.tile(mask, [1, s[1], s[2], s[3]])
x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
s = tf.shape(x)
y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
y = tf.reduce_mean(y, axis=[3, 5], keep_dims=True)
y = tf.tile(y, [1, 1, 1, 2, 1, 2])
y = tf.reshape(y, [-1, s[1], s[2], s[3]])
x = tfutil.lerp(x, y, lod - tf.floor(lod))
with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
s = tf.shape(x)
factor = tf.cast(2 ** tf.floor(lod), tf.int32)
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
#----------------------------------------------------------------------------
# Just-in-time processing of masks before feeding them to the networks.
示例2: process_masks
# 需要导入模块: import misc [as 别名]
# 或者: from misc import adjust_dynamic_range [as 别名]
def process_masks(x):
with tf.name_scope('ProcessMasks'):
x = tf.cast(x, tf.float32)
x = misc.adjust_dynamic_range(x, [0, 255], [-1, 1])
return x
#----------------------------------------------------------------------------
# Just-in-time processing of masks before feeding them to the networks.
示例3: process_reals
# 需要导入模块: import misc [as 别名]
# 或者: from misc import adjust_dynamic_range [as 别名]
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
with tf.name_scope('ProcessReals'):
with tf.name_scope('DynamicRange'):
x = tf.cast(x, tf.float32)
x = misc.adjust_dynamic_range(x, drange_data, drange_net)
if mirror_augment:
with tf.name_scope('MirrorAugment'):
s = tf.shape(x)
mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
mask = tf.tile(mask, [1, s[1], s[2], s[3]])
x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
s = tf.shape(x)
y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
y = tf.reduce_mean(y, axis=[3, 5], keepdims=True)
y = tf.tile(y, [1, 1, 1, 2, 1, 2])
y = tf.reshape(y, [-1, s[1], s[2], s[3]])
x = tfutil.lerp(x, y, lod - tf.floor(lod))
with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
s = tf.shape(x)
factor = tf.cast(2 ** tf.floor(lod), tf.int32)
x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
x = tf.tile(x, [1, 1, 1, factor, 1, factor])
x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
return x
#----------------------------------------------------------------------------
# Class for evaluating and storing the values of time-varying training parameters.