当前位置: 首页>>代码示例>>Python>>正文


Python mlab.close方法代码示例

本文整理汇总了Python中mayavi.mlab.close方法的典型用法代码示例。如果您正苦于以下问题:Python mlab.close方法的具体用法?Python mlab.close怎么用?Python mlab.close使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mayavi.mlab的用法示例。


在下文中一共展示了mlab.close方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: mayavi_scraper

# 需要导入模块: from mayavi import mlab [as 别名]
# 或者: from mayavi.mlab import close [as 别名]
def mayavi_scraper(block, block_vars, gallery_conf):
    """Scrape Mayavi images.

    Parameters
    ----------
    block : tuple
        A tuple containing the (label, content, line_number) of the block.
    block_vars : dict
        Dict of block variables.
    gallery_conf : dict
        Contains the configuration of Sphinx-Gallery

    Returns
    -------
    rst : str
        The ReSTructuredText that will be rendered to HTML containing
        the images. This is often produced by :func:`figure_rst`.
    """
    from mayavi import mlab
    image_path_iterator = block_vars['image_path_iterator']
    image_paths = list()
    e = mlab.get_engine()
    for scene, image_path in zip(e.scenes, image_path_iterator):
        mlab.savefig(image_path, figure=scene)
        # make sure the image is not too large
        scale_image(image_path, image_path, 850, 999)
        if 'images' in gallery_conf['compress_images']:
            optipng(image_path, gallery_conf['compress_images_args'])
        image_paths.append(image_path)
    mlab.close(all=True)
    return figure_rst(image_paths, gallery_conf['src_dir']) 
开发者ID:sphinx-gallery,项目名称:sphinx-gallery,代码行数:33,代码来源:scrapers.py

示例2: show_selected_grasps_with_color

# 需要导入模块: from mayavi import mlab [as 别名]
# 或者: from mayavi.mlab import close [as 别名]
def show_selected_grasps_with_color(m, ply_name_, title, obj_):
    m_good = m[m[:, 1] <= 0.4]
    m_good = m_good[np.random.choice(len(m_good), size=25, replace=True)]
    m_bad = m[m[:, 1] >= 1.8]
    m_bad = m_bad[np.random.choice(len(m_bad), size=25, replace=True)]
    collision_grasp_num = 0

    if save_fig or show_fig:
        # fig 1: good grasps
        mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
        mlab.pipeline.surface(mlab.pipeline.open(ply_name_))
        for a in m_good:
            # display_gripper_on_object(obj, a[0])  # real gripper
            collision_free = display_grasps(a[0], obj_, color='d')  # simulated gripper
            if not collision_free:
                collision_grasp_num += 1

        if save_fig:
            mlab.savefig("good_"+title+".png")
            mlab.close()
        elif show_fig:
            mlab.title(title, size=0.5)

        # fig 2: bad grasps
        mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
        mlab.pipeline.surface(mlab.pipeline.open(ply_name_))

        for a in m_bad:
            # display_gripper_on_object(obj, a[0])  # real gripper
            collision_free = display_grasps(a[0], obj_, color=(1, 0, 0))
            if not collision_free:
                collision_grasp_num += 1

        if save_fig:
            mlab.savefig("bad_"+title+".png")
            mlab.close()
        elif show_fig:
            mlab.title(title, size=0.5)
            mlab.show()
    elif generate_new_file:
        # only to calculate collision:
        collision_grasp_num = 0
        ind_good_grasp_ = []
        for i_ in range(len(m)):
            collision_free = display_grasps(m[i_][0], obj_, color=(1, 0, 0))
            if not collision_free:
                collision_grasp_num += 1
            else:
                ind_good_grasp_.append(i_)
        collision_grasp_num = str(collision_grasp_num)
        collision_grasp_num = (4-len(collision_grasp_num))*" " + collision_grasp_num
        print("collision_grasp_num =", collision_grasp_num, "| object name:", title)
        return ind_good_grasp_ 
开发者ID:lianghongzhuo,项目名称:PointNetGPD,代码行数:55,代码来源:read_grasps_from_file.py

示例3: save_figures

# 需要导入模块: from mayavi import mlab [as 别名]
# 或者: from mayavi.mlab import close [as 别名]
def save_figures(image_path, fig_count, gallery_conf):
    """Save all open matplotlib figures of the example code-block

    Parameters
    ----------
    image_path : str
        Path where plots are saved (format string which accepts figure number)
    fig_count : int
        Previous figure number count. Figure number add from this number

    Returns
    -------
    list of strings containing the full path to each figure
    """
    figure_list = []

    fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers()
    for fig_mngr in fig_managers:
        # Set the fig_num figure as the current figure as we can't
        # save a figure that's not the current figure.
        fig = plt.figure(fig_mngr.num)
        kwargs = {}
        to_rgba = matplotlib.colors.colorConverter.to_rgba
        for attr in ['facecolor', 'edgecolor']:
            fig_attr = getattr(fig, 'get_' + attr)()
            default_attr = matplotlib.rcParams['figure.' + attr]
            if to_rgba(fig_attr) != to_rgba(default_attr):
                kwargs[attr] = fig_attr

        current_fig = image_path.format(fig_count + fig_mngr.num)
        fig.savefig(current_fig, **kwargs)
        figure_list.append(current_fig)

    if gallery_conf.get('find_mayavi_figures', False):
        from mayavi import mlab
        e = mlab.get_engine()
        last_matplotlib_fig_num = len(figure_list)
        total_fig_num = last_matplotlib_fig_num + len(e.scenes)
        mayavi_fig_nums = range(last_matplotlib_fig_num, total_fig_num)

        for scene, mayavi_fig_num in zip(e.scenes, mayavi_fig_nums):
            current_fig = image_path.format(mayavi_fig_num)
            mlab.savefig(current_fig, figure=scene)
            # make sure the image is not too large
            scale_image(current_fig, current_fig, 850, 999)
            figure_list.append(current_fig)
        mlab.close(all=True)

    return figure_list 
开发者ID:cokelaer,项目名称:spectrum,代码行数:51,代码来源:gen_rst.py


注:本文中的mayavi.mlab.close方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。