本文整理汇总了Python中maya.cmds.connectAttr方法的典型用法代码示例。如果您正苦于以下问题:Python cmds.connectAttr方法的具体用法?Python cmds.connectAttr怎么用?Python cmds.connectAttr使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类maya.cmds
的用法示例。
在下文中一共展示了cmds.connectAttr方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dpIsolate
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def dpIsolate(self, attrName, nodeList, *args):
""" Function to run isolate setup.
"""
# get father zero out transform node
zeroGrp = cmds.listRelatives(nodeList[2], allParents=True, type="transform")[0]
# create parent constraint
pConst = cmds.parentConstraint(nodeList[0], nodeList[1], zeroGrp, maintainOffset=True, skipTranslate=["x", "y", "z"])[0]
# add isolate attribute to selected control
cmds.addAttr(nodeList[2], longName=attrName, defaultValue=1.0, minValue=0, maxValue=1, keyable=True)
# create reverse node
reverseNode = cmds.createNode('reverse', name=nodeList[2]+"_"+attrName.capitalize()+"_Rev")
# do isolate connections
cmds.connectAttr(nodeList[2]+"."+attrName, pConst+"."+nodeList[0]+"W0", force=True)
cmds.connectAttr(nodeList[2]+"."+attrName, reverseNode+".inputX", force=True)
cmds.connectAttr(reverseNode+".outputX", pConst+"."+nodeList[1]+"W1", force=True)
cmds.select(nodeList[2])
示例2: twistBoneMatrix
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def twistBoneMatrix(nodeA, nodeB, twistBoneName, twistBoneMD=None, axis='Z', inverse=True, *args):
""" Create matrix nodes and quaternion to extract rotate.
nodeA = father transform node
nodeB = child transform node
Returns the final multiplyDivide node created or given.
Reference:
https://bindpose.com/maya-matrix-nodes-part-2-node-based-matrix-twist-calculator/
"""
twistBoneMM = cmds.createNode("multMatrix", name=twistBoneName+"_ExtractAngle_MM")
twistBoneDM = cmds.createNode("decomposeMatrix", name=twistBoneName+"_ExtractAngle_DM")
twistBoneQtE = cmds.createNode("quatToEuler", name=twistBoneName+"_ExtractAngle_QtE")
cmds.connectAttr(nodeB+".worldMatrix[0]", twistBoneMM+".matrixIn[0]", force=True)
if inverse:
cmds.connectAttr(nodeA+".worldInverseMatrix[0]", twistBoneMM+".matrixIn[1]", force=True)
else:
cmds.connectAttr(nodeA+".worldMatrix[0]", twistBoneMM+".matrixIn[1]", force=True)
cmds.connectAttr(twistBoneMM+".matrixSum", twistBoneDM+".inputMatrix", force=True)
cmds.connectAttr(twistBoneDM+".outputQuat.outputQuat"+axis, twistBoneQtE+".inputQuat.inputQuat"+axis, force=True)
cmds.connectAttr(twistBoneDM+".outputQuat.outputQuatW", twistBoneQtE+".inputQuat.inputQuatW", force=True)
if twistBoneMD:
cmds.connectAttr(twistBoneQtE+".outputRotate.outputRotate"+axis, twistBoneMD+".input2"+axis, force=True)
else:
twistBoneMD = cmds.createNode("multiplyDivide", name=twistBoneName+"_MD")
cmds.connectAttr(twistBoneQtE+".outputRotate.outputRotate"+axis, twistBoneMD+".input2"+axis, force=True)
return twistBoneMD
示例3: __normalizeSlideAttributes
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def __normalizeSlideAttributes(self):
normalized = []
attributes = [
"slide_center",
"slide_shift",
"slide_shift_min",
"slide_shift_max"
]
# loop attributes
for attr in attributes:
mdl = cmds.createNode(
"multDoubleLinear",
n="{0}_{1}_norm_mdl".format(self.name, attr)
)
cmds.setAttr("{0}.input1".format(mdl), 0.1)
cmds.connectAttr(
"{0}.{1}".format(self.slideControl, attr),
"{0}.input2".format(mdl)
)
normalized.append("{0}.output".format(mdl))
return normalized
示例4: scalar_dynamic
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def scalar_dynamic(self, scalB):
"""
The dynamic mult for the NScalar class
By dynamic I mean that the scalB value is going to be driven by a connection,
thus needs to be a NScalar instance.
:scalB: NScalar, the scalar to be multiplied by
:return: NScalar instance
"""
md = self._generate_node("multDoubleLinear", "mul")
cmds.connectAttr(self.attribute_name, md + '.input1')
cmds.connectAttr(scalB.attribute_name, md + '.input2')
return NScalar.with_generator(md + ".output", self._generator)
示例5: scalar_static
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def scalar_static(self, value):
"""
The static mult for the NScalar class
By static I mean that the scalB value is going to hardcoded in the
node performing the operation, which means it wont change over time
:value: int,float, the value to be multiplied by
:return: NScalar instance
"""
md = self._generate_node("multDoubleLinear", "mul")
cmds.connectAttr(self.attribute_name, md + '.input1')
cmds.setAttr(md + '.input2',value)
return NScalar.with_generator(md + ".output", self._generator)
示例6: division_dynamic
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def division_dynamic(self, scalB):
"""
The dynamic divison for the NScalar class
By dynamic I mean that the scalB value is going to be driven by a connection,
thus needs to be a NScalar instance.
:scalB: NScalar, the scalar to be divided by
:return: NScalar instance
"""
md = self._generate_node("multiplyDivide", "div")
cmds.connectAttr(self.attribute_name, md + '.input1X')
cmds.connectAttr(scalB.attribute_name, md + '.input2X')
cmds.setAttr(md + '.operation',2)
return NScalar.with_generator(md + ".outputX", self._generator)
示例7: division_static
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def division_static(self,value):
"""
The static divison for the NScalar class
By static I mean that the scalB value is going to be static and hardcoded,
in the node. Meant for value not changing over time
Args:
:value: float,int, the value needed for the operation
:return: NScalar instance
"""
md = self._generate_node("multiplyDivide", "div")
cmds.connectAttr(self.attribute_name, md + '.input1X')
cmds.setAttr(md + '.input2X', value)
cmds.setAttr(md + '.operation',2)
return NScalar.with_generator(md + ".outputX", self._generator)
示例8: dot
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def dot(self, vecB):
"""
This function performs a dot product
Args:
:vecB: NVec, the second class for the operation
:return: NVec instance
"""
assert type(vecB) == NVec, "__sub__ ERROR: input parameter needs to be of type NVec"
vecProd = cmds.createNode("vectorProduct", n = self._generator.next()+ "_dot")
cmds.connectAttr(self.attribute_name , vecProd + '.input1')
cmds.connectAttr(vecB.attribute_name , vecProd + '.input2')
return NVec.with_generator(vecProd+ '.output', self._generator)
示例9: cross
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def cross(self,vecB):
"""
Cross product function
Args:
:vecB: NVec, the second class for the operation
:return: NVec instance
"""
assert type(vecB) == NVec, "__sub__ ERROR: input parameter needs to be of type NVec"
vecProd = cmds.createNode("vectorProduct", n = self._generator.next()+ "_cross")
cmds.setAttr(vecProd + '.operation', 2)
cmds.connectAttr(self.attribute_name , vecProd + '.input1')
cmds.connectAttr(vecB.attribute_name , vecProd + '.input2')
return NVec.with_generator(vecProd+ '.output', self._generator)
示例10: __sub__
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def __sub__(self,vecB):
"""
Subtraction operator for NVec
Args:
:vecB: NVec, the second class for the operation
:return: NVec instance
"""
assert type(vecB) == NVec, "__sub__ ERROR: input parameter needs to be of type NVec"
pma = cmds.createNode("plusMinusAverage", n = self._generator.next()+ "_sub")
cmds.connectAttr(vecB.attribute_name, pma + '.input3D[0]')
cmds.connectAttr(self.attribute_name, pma + '.input3D[1]')
cmds.setAttr(pma + '.operation',2)
return NVec.with_generator(pma+ '.output3D', self._generator)
示例11: dpLimitTranslate
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def dpLimitTranslate(self, fCtrl, ctrlName, axis, *args):
""" Create a hyperbolic setup to limit min and max value for translation of the control.
Resuming it's just divide 1 by the calibrate value.
"""
hyperboleTLimitMD = cmds.createNode("multiplyDivide", name=ctrlName+"_LimitT"+axis+"_MD")
hyperboleInvMD = cmds.createNode("multiplyDivide", name=ctrlName+"_LimitT"+axis+"_Inv_MD")
cmds.setAttr(hyperboleTLimitMD+".input1X", 1)
cmds.setAttr(hyperboleTLimitMD+".operation", 2)
cmds.setAttr(hyperboleInvMD+".input2X", -1)
cmds.connectAttr(fCtrl+".calibrateT"+axis, hyperboleTLimitMD+".input2X", force=True)
cmds.connectAttr(hyperboleTLimitMD+".outputX", fCtrl+".maxTransLimit.maxTrans"+axis+"Limit", force=True)
cmds.connectAttr(hyperboleTLimitMD+".outputX", hyperboleInvMD+".input1X", force=True)
cmds.connectAttr(hyperboleInvMD+".outputX", fCtrl+".minTransLimit.minTrans"+axis+"Limit", force=True)
示例12: dpCreateRemapNode
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def dpCreateRemapNode(self, fromNode, fromAttr, toNodeBaseName, toNode, toAttr, number, sizeFactor, oMin=0, oMax=1, iMin=0, iMax=1, *args):
""" Creates the nodes to remap values and connect it to final output (toNode) item.
"""
fromNodeName = utils.extractSuffix(fromNode)
remap = cmds.createNode("remapValue", name=fromNodeName+"_"+fromAttr+"_"+str(number).zfill(2)+"_"+toAttr.upper()+"_RmV")
outMaxAttr = toNodeBaseName+"_"+str(number).zfill(2)+"_"+toAttr.upper()
if "t" in toAttr:
if not cmds.objExists(fromNode+".sizeFactor"):
cmds.addAttr(fromNode, longName="sizeFactor", attributeType="float", defaultValue=sizeFactor, keyable=False)
cmds.addAttr(fromNode, longName=outMaxAttr, attributeType="float", defaultValue=oMax, keyable=False)
md = cmds.createNode("multiplyDivide", name=fromNodeName+"_"+fromAttr+"_"+str(number).zfill(2)+"_"+toAttr.upper()+"_SizeFactor_MD")
cmds.connectAttr(fromNode+"."+outMaxAttr, md+".input1X", force=True)
cmds.connectAttr(fromNode+".sizeFactor", md+".input2X", force=True)
cmds.connectAttr(md+".outputX", remap+".outputMax", force=True)
else:
cmds.addAttr(fromNode, longName=outMaxAttr, attributeType="float", defaultValue=oMax, keyable=False)
cmds.connectAttr(fromNode+"."+outMaxAttr, remap+".outputMax", force=True)
cmds.setAttr(remap+".inputMin", iMin)
cmds.setAttr(remap+".inputMax", iMax)
cmds.setAttr(remap+".outputMin", oMin)
cmds.connectAttr(fromNode+"."+fromAttr, remap+".inputValue", force=True)
# check if there's an input connection and create a plusMinusAverage if we don't have one to connect in:
connectedList = cmds.listConnections(toNode+"."+toAttr, destination=False, source=True, plugs=False)
if connectedList:
if cmds.objectType(connectedList[0]) == "plusMinusAverage":
inputList = cmds.listConnections(connectedList[0]+".input1D", destination=False, source=True, plugs=False)
cmds.connectAttr(remap+".outValue", connectedList[0]+".input1D["+str(len(inputList))+"]", force=True)
else:
if cmds.objectType(connectedList[0]) == "unitConversion":
connectedAttr = cmds.listConnections(connectedList[0]+".input", destination=False, source=True, plugs=True)[0]
else:
connectedAttr = cmds.listConnections(toNode+"."+toAttr, destination=False, source=True, plugs=True)[0]
pma = cmds.createNode("plusMinusAverage", name=toNode+"_"+toAttr.upper()+"_PMA")
cmds.connectAttr(connectedAttr, pma+".input1D[0]", force=True)
cmds.connectAttr(remap+".outValue", pma+".input1D[1]", force=True)
cmds.connectAttr(pma+".output1D", toNode+"."+toAttr, force=True)
if cmds.objectType(connectedList[0]) == "unitConversion":
cmds.delete(connectedList[0])
else:
cmds.connectAttr(remap+".outValue", toNode+"."+toAttr, force=True)
示例13: dpInvertAttrTranformation
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def dpInvertAttrTranformation(self, nodeName, invT=True, invR=False, *args):
""" Creates a setup to invert attribute transformations in order to avoid doubleTransformation.
"""
axisList = ['X', 'Y', 'Z']
if cmds.objExists(nodeName):
nodePivot = cmds.xform(nodeName, query=True, worldSpace=True, rotatePivot=True)
if invR:
invRGrp = cmds.group(nodeName, name=nodeName+"_InvR_Grp")
cmds.xform(invRGrp, worldSpace=True, rotatePivot=(nodePivot[0], nodePivot[1], nodePivot[2]), rotateOrder="zyx")
rMD = cmds.createNode('multiplyDivide', name=nodeName+"_InvR_MD", skipSelect=True)
cmds.setAttr(rMD+'.input2X', -1)
cmds.setAttr(rMD+'.input2Y', -1)
cmds.setAttr(rMD+'.input2Z', -1)
for axis in axisList:
cmds.connectAttr(nodeName+'.rotate'+axis, rMD+'.input1'+axis, force=True)
cmds.connectAttr(rMD+'.output'+axis, invRGrp+'.rotate'+axis, force=True)
if invT:
invTGrp = cmds.group(nodeName, name=nodeName+"_InvT_Grp")
cmds.xform(invTGrp, worldSpace=True, rotatePivot=(nodePivot[0], nodePivot[1], nodePivot[2]))
tMD = cmds.createNode('multiplyDivide', name=nodeName+"_InvT_MD", skipSelect=True)
cmds.setAttr(tMD+'.input2X', -1)
cmds.setAttr(tMD+'.input2Y', -1)
cmds.setAttr(tMD+'.input2Z', -1)
for axis in axisList:
cmds.connectAttr(nodeName+'.translate'+axis, tMD+'.input1'+axis, force=True)
cmds.connectAttr(tMD+'.output'+axis, invTGrp+'.translate'+axis, force=True)
示例14: sqCreateStikyLipsDeformers
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def sqCreateStikyLipsDeformers(self, *args):
baseMesh = None
mainCurveList = [self.mainCurveA, self.mainCurveB]
for mainCurve in mainCurveList:
if baseMesh == None:
baseMesh = cmds.duplicate(self.receptList[0], name=self.receptList[0]+"Base")[0]
cmds.setAttr(baseMesh+".visibility", 0)
wrapNode = cmds.deformer(mainCurve, name="StickyLips_Wrap", type="wrap")[0]
try:
cmds.connectAttr(self.receptList[0]+".dropoff", wrapNode+".dropoff[0]", force=True)
cmds.connectAttr(self.receptList[0]+".inflType", wrapNode+".inflType[0]", force=True)
cmds.connectAttr(self.receptList[0]+".smoothness", wrapNode+".smoothness[0]", force=True)
cmds.connectAttr(self.receptList[0]+"Shape.worldMesh[0]", wrapNode+".driverPoints[0]", force=True)
except:
pass
cmds.connectAttr(baseMesh+"Shape.worldMesh[0]", wrapNode+".basePoints[0]", force=True)
cmds.connectAttr(mainCurve+"Shape.worldMatrix[0]", wrapNode+".geomMatrix", force=True)
cmds.setAttr(wrapNode+".maxDistance", 1)
cmds.setAttr(wrapNode+".autoWeightThreshold", 1)
cmds.setAttr(wrapNode+".exclusiveBind", 1)
baseCurveList = [self.baseCurveA, self.baseCurveB]
for c, baseCurve in enumerate(baseCurveList):
wireNode = cmds.wire(self.receptList[1], name=baseCurve+"_Wire", groupWithBase=False, crossingEffect=0, localInfluence=0)[0]
cmds.connectAttr(mainCurveList[c]+"Shape.worldSpace[0]", wireNode+".baseWire[0]", force=True)
cmds.connectAttr(baseCurve+"Shape.worldSpace[0]", wireNode+".deformedWire[0]", force=True)
self.wireNodeList.append(wireNode)
wireLocList = []
for i in range(0, self.maxIter):
wireLocList.append(baseCurve+".u["+str(i)+"]")
cmds.dropoffLocator(1, 1, wireNode, wireLocList)
示例15: directConnect
# 需要导入模块: from maya import cmds [as 别名]
# 或者: from maya.cmds import connectAttr [as 别名]
def directConnect(self, fromObj, toObj, attrList=['tx', 'ty', 'tz', 'rx', 'ry', 'rz', 'sx', 'sy', 'sz'], f=True, *args):
"""Connect attributes from list directely between two objects given.
"""
if cmds.objExists(fromObj) and cmds.objExists(toObj):
for attr in attrList:
try:
# connect attributes:
cmds.connectAttr(fromObj+"."+attr, toObj+"."+attr, force=f)
except:
print "Error: Cannot connect", toObj, ".", attr, "directely."