本文整理汇总了Python中matplotlib.widgets.Slider方法的典型用法代码示例。如果您正苦于以下问题:Python widgets.Slider方法的具体用法?Python widgets.Slider怎么用?Python widgets.Slider使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.widgets
的用法示例。
在下文中一共展示了widgets.Slider方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def __init__(self, rect, wtype, *args, **kwargs):
"""
Creates a matplotlib.widgets widget
:param rect: The rectangle of the position [left, bottom, width, height] in relative figure coordinates
:param wtype: A type from matplotlib.widgets, eg. Button, Slider, TextBox, RadioButtons
:param args: Positional arguments passed to the widget
:param kwargs: Keyword arguments passed to the widget and events used for the widget
eg. if wtype is Slider, on_changed=f can be used as keyword argument
"""
self.ax = plt.axes(rect)
events = {}
for k in list(kwargs.keys()):
if k.startswith('on_'):
events[k] = kwargs.pop(k)
self.object = wtype(self.ax, *args, **kwargs)
for k in events:
if hasattr(self.object, k):
getattr(self.object, k)(events[k])
示例2: _make_widgets
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def _make_widgets(self):
"""
Creates the sliders
:return:
"""
if hasattr(self, 'sliders'):
for s in self.sliders:
s.ax.remove()
sliders = []
step = max(0.005, min(0.05, 0.8/len(self.parameter_array)))
for i, row in enumerate(self.parameter_array):
rect = [0.75, 0.9 - step * i, 0.2, step - 0.005]
s = Widget(rect, Slider, row['name'], row['minbound'], row['maxbound'],
valinit=row['optguess'], on_changed=ValueChanger(row['name'], self.parameter_values))
sliders.append(s)
plt.draw()
return sliders
示例3: show_heatmap
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def show_heatmap(self, blocking=True, output_file=None, enable_scroll=False):
"""Method to actually display the heatmap created.
@param blocking: When set to False makes an unblocking plot show.
@param output_file: If not None the heatmap image is output to this
file. Supported formats: (eps, pdf, pgf, png, ps, raw, rgba, svg,
svgz)
@param enable_scroll: Flag used add a scroll bar to scroll long files.
"""
if output_file is None:
if enable_scroll:
# Add a new axes which will be used as scroll bar.
axpos = plt.axes([0.12, 0.1, 0.625, 0.03])
spos = Slider(axpos, "Scroll", 10, len(self.pyfile.lines))
def update(val):
"""Method to update position when slider is moved."""
pos = spos.val
self.ax.axis([0, 1, pos, pos - 10])
self.fig.canvas.draw_idle()
spos.on_changed(update)
plt.show(block=blocking)
else:
plt.savefig(output_file)
示例4: __init__
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def __init__(self,porttype):
self.porttype = porttype
self.results = []
#def GUIfit(porttype,f_data,z_data_raw):
# '''
# GUI based fitting process enabeling cutting the data and manually setting the delay
# It employs the Matplotlib widgets
# return f1, f2 and delay, which should be employed for the real fitting
# '''
# if porttype=='direct':
# p = reflection_port(f_data=f_data,z_data_raw=z_data_raw)
# elif porttype =='notch':
# p = notch_port(f_data=f_data,z_data_raw=z_data_raw)
# else:
# warnings.warn('Not supported!')
# return None
# import matplotlib.pyplot as plt
# from matplotlib.widgets import Slider, Button, RadioButtons
# #plt.style.use('ggplot')
# fig, axes = plt.subplots(nrows=2,ncols=2)
#
# return f1,f2,delay
示例5: interactive
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def interactive(self):
"""Simple interactive quadtree plot with matplot
This is a relictic function
"""
from matplotlib.widgets import Slider
self._initImagePlot()
def change_epsilon(e):
self._quadtree.epsilon = e
def close_figure(*args):
self._quadtree.evChanged.unsubscribe(self._update)
self.ax.set_position([0.05, 0.15, 0.90, 0.8])
ax_eps = self.fig.add_axes([0.05, 0.1, 0.90, 0.03])
self.data = self._quadtree.leaf_matrix_means
self.title = 'Quadtree Means - Interactive'
self._addInfoText()
epsilon = Slider(ax_eps, 'Epsilon',
self._quadtree.epsilon - 1.*self._quadtree.epsilon,
self._quadtree.epsilon + 1.*self._quadtree.epsilon,
valinit=self._quadtree.epsilon, valfmt='%1.3f')
# Catch events
epsilon.on_changed(change_epsilon)
self._quadtree.evChanged.subscribe(self._update)
self.fig.canvas.mpl_connect('close_event', close_figure)
plt.show()
示例6: test_slider_slidermin_slidermax_invalid
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def test_slider_slidermin_slidermax_invalid():
fig, ax = plt.subplots()
# test min/max with floats
with pytest.raises(ValueError):
widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
slidermin=10.0)
with pytest.raises(ValueError):
widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
slidermax=10.0)
示例7: test_slider_slidermin_slidermax
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def test_slider_slidermin_slidermax():
fig, ax = plt.subplots()
slider_ = widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
valinit=5.0)
slider = widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
valinit=1.0, slidermin=slider_)
assert slider.val == slider_.val
slider = widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
valinit=10.0, slidermax=slider_)
assert slider.val == slider_.val
示例8: test_slider_valmin_valmax
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def test_slider_valmin_valmax():
fig, ax = plt.subplots()
slider = widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
valinit=-10.0)
assert slider.val == slider.valmin
slider = widgets.Slider(ax=ax, label='', valmin=0.0, valmax=24.0,
valinit=25.0)
assert slider.val == slider.valmax
示例9: create_slider
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def create_slider(self):
self.axcolor = 'lightgoldenrodyellow'
ax_slider = plt.axes([0.2, 0.1, 0.65, 0.03], facecolor=self.axcolor)
self.slider = Slider(ax_slider, 'Id', 0, self.num_images - 1, valinit=0)
self.slider.on_changed(self.slider_callback)
示例10: add_alpha_slider
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def add_alpha_slider(self):
"""Controls the transparency level of overlay"""
# alpha slider
ax_slider = plt.axes(cfg.position_slider_seg_alpha,
facecolor=cfg.color_slider_axis)
self.slider = Slider(ax_slider, label='transparency',
valmin=0.0, valmax=1.0, valinit=0.7, valfmt='%1.2f')
self.slider.label.set_position((0.99, 1.5))
self.slider.on_changed(self.set_alpha_value)
示例11: plot_progress
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def plot_progress(self):
# Redraw all lines
self.axprogress.lines = []
self.axprogress.plot(self.reward, color='#1f77b4', label='Reward')
#self.axprogress.plot(self.reward_mean, color='#ff7f0e', label='Reward (average)')
self.axprogress.legend()
# Redraw slider
if self.sl_episode is None or int(round(self.sl_episode.val)) == self.num_episodes - 2:
cur_ep = self.num_episodes - 1
else:
cur_ep = int(round(self.sl_episode.val))
self.axslider.clear()
#self.sl_episode = Slider(self.axslider, 'Episode (0..{})'.format(self.num_episodes - 1), 0, self.num_episodes - 1, valinit=self.num_episodes - 1, valfmt='%6.0f')
self.sl_episode = Slider(self.axslider, 'Episode (0..{})'.format(self.num_episodes - 1), 0, self.num_episodes - 1, valinit=cur_ep, valfmt='%6.0f')
self.sl_episode.on_changed(self.set_episode_num)
示例12: GUIbaselinefit
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def GUIbaselinefit(self):
'''
A GUI to help you fit the baseline
'''
self.__lam = 1e6
self.__p = 0.9
niter = 10
self.__baseline = self._baseline_als(np.absolute(self.z_data_raw),self.__lam,self.__p,niter=niter)
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
fig, (ax0,ax1) = plt.subplots(nrows=2)
plt.suptitle('Use the sliders to make the green curve match the baseline.')
plt.subplots_adjust(left=0.25, bottom=0.25)
l0, = ax0.plot(np.absolute(self.z_data_raw))
l0b, = ax0.plot(np.absolute(self.__baseline))
l1, = ax1.plot(np.absolute(self.z_data_raw/self.__baseline))
ax0.set_ylabel('amp, rawdata vs. baseline')
ax1.set_ylabel('amp, corrected')
axcolor = 'lightgoldenrodyellow'
axSmooth = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor)
axAsym = plt.axes([0.25, 0.15, 0.65, 0.03], axisbg=axcolor)
axbcorr = plt.axes([0.25, 0.05, 0.65, 0.03], axisbg=axcolor)
sSmooth = Slider(axSmooth, 'Smoothness', 0.1, 10., valinit=np.log10(self.__lam),valfmt='1E%f')
sAsym = Slider(axAsym, 'Asymmetry', 1e-4,0.99999, valinit=self.__p,valfmt='%f')
sbcorr = Slider(axbcorr, 'vertical shift',0.7,1.1,valinit=1.)
def update(val):
self.__lam = 10**sSmooth.val
self.__p = sAsym.val
self.__baseline = sbcorr.val*self._baseline_als(np.absolute(self.z_data_raw),self.__lam,self.__p,niter=niter)
l0.set_ydata(np.absolute(self.z_data_raw))
l0b.set_ydata(np.absolute(self.__baseline))
l1.set_ydata(np.absolute(self.z_data_raw/self.__baseline))
fig.canvas.draw_idle()
sSmooth.on_changed(update)
sAsym.on_changed(update)
sbcorr.on_changed(update)
plt.show()
self.z_data_raw /= self.__baseline
plt.close()
示例13: getManualRegistrationError
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def getManualRegistrationError(visual, heightmap, image_scale, pc):
upper_left_enu = pc.ulENU()
lower_right_enu = pc.lrENU()
upper_left_latlon = pc.enuToLatLon(*upper_left_enu)
lower_right_latlon = pc.enuToLatLon(*lower_right_enu)
# Order is South, West, North, East
result = OSMTGC.getOSMData(lower_right_latlon[0], upper_left_latlon[1], upper_left_latlon[0], lower_right_latlon[1])
# TODO Scale, Sharpen, and Increase Local Constrast for these images to get potentially easier results?
image_dict = {}
image_dict["Visible"] = visual
image_dict["Visible Golf"] = None
image_dict["Heightmap"] = heightmap
image_dict["Heightmap Golf"] = None
fig, ax = plt.subplots()
plt.title('Move Slider and Press Apply. Close Window When Happy With Alignment')
axcolor = 'green'
plt.subplots_adjust(left=0.3, bottom=0.25)
axx = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)
axy = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
sx = Slider(axx, 'West/East', -10.0, 10.0, valinit=0.0)
sy = Slider(axy, 'South/North', -10.0, 10.0, valinit=0.0)
applyax = plt.axes([0.8, 0.025, 0.1, 0.04])
button = Button(applyax, 'Apply', color=axcolor, hovercolor='0.975')
rax = plt.axes([0.05, 0.7, 0.15, 0.15], facecolor=axcolor)
radio = RadioButtons(rax, image_dict.keys())
update_image = partial(drawNewImage, ax, image_dict)
radio.on_clicked(update_image)
new_offset = partial(drawNewLocation, ax, image_dict, result, image_scale, radio, sx, sy, 1)
button.on_clicked(new_offset)
drawNewLocation(ax, image_dict, result, image_scale, radio, None, None, None, None)
plt.show()
return (sx.val, sy.val)
示例14: matshow
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def matshow(data, matnames=[], dimnames=[]):
if not isinstance(data, list):
data = [data]
for i in range(len(data)):
if type(data[i]) is torch.Tensor:
data[i] = data[i].numpy()
ndim = max([d.ndim for d in data])
for i in range(len(data)):
while data[i].ndim < ndim:
data[i] = np.expand_dims(data[i], axis=0)
shape = []
for dim in range(ndim - 2):
shape.append(max(d.shape[dim] for d in data))
figure, axes = plt.subplots(
1, len(data), sharex=True, sharey=True, squeeze=False)
for i in range(len(data)):
axes[0,i].imshow(_take(data[i], [0] * (ndim-2)),
vmin=np.amin(data[i]), vmax=np.amax(data[i]),
interpolation=None, origin='lower',
extent=[0.0, data[i].shape[-1], 0.0, data[i].shape[-2]])
for i in range(min(len(data), len(matnames))):
axes[0,i].set_title(matnames[i])
sliders = []
updatefuncs = []
bottom = np.linspace(0.0, 0.1, ndim)[1:-1]
for i in range(len(shape)):
sliderax = plt.axes([0.2, bottom[i], 0.6, 0.02],
facecolor='lightgoldenrodyellow')
if i < len(dimnames):
label = dimnames[i]
else:
label = 'Axis {}'.format(i)
sliders.append(Slider(sliderax, label=label,
valmin=0, valmax=shape[i]-1, valinit=0, valstep=1))
def update(val):
indices = [int(slider.val) for slider in sliders]
for j in range(axes.size):
axes[0,j].images[0].set_array(_take(data[j], indices))
figure.canvas.draw_idle()
updatefuncs.append(update)
sliders[i].on_changed(updatefuncs[i])
plt.show()
示例15: show_progress
# 需要导入模块: from matplotlib import widgets [as 别名]
# 或者: from matplotlib.widgets import Slider [as 别名]
def show_progress(self):
self.monitor_file = self.log_dir + '/monitor.csv'
# Read progress file
if not self.read_monitor_file():
print('Progress data is missing')
sys.exit(1)
# Initialize graph
plt.rcdefaults()
plt.rcParams['font.size'] = 6
plt.rcParams['lines.linewidth'] = 1.0
plt.rcParams['legend.loc'] = 'lower right'
self.fig = plt.figure(1, figsize=(16, 10))
# Show widgets
axcolor = 'lightgoldenrodyellow'
self.axprogress = self.fig.add_axes([0.15, 0.10, 0.70, 0.15], facecolor=axcolor)
self.axslider = self.fig.add_axes([0.15, 0.04, 0.70, 0.02], facecolor=axcolor)
axfirst = self.fig.add_axes([0.15, 0.01, 0.03, 0.02])
axlast = self.fig.add_axes([0.82, 0.01, 0.03, 0.02])
axprev = self.fig.add_axes([0.46, 0.01, 0.03, 0.02])
axnext = self.fig.add_axes([0.51, 0.01, 0.03, 0.02])
# Slider is drawn in plot_progress()
# First/Last button
self.button_first = Button(axfirst, 'First', color=axcolor, hovercolor='0.975')
self.button_first.on_clicked(self.first_episode_num)
self.button_last = Button(axlast, 'Last', color=axcolor, hovercolor='0.975')
self.button_last.on_clicked(self.last_episode_num)
# Next/Prev button
self.button_prev = Button(axprev, 'Prev', color=axcolor, hovercolor='0.975')
self.button_prev.on_clicked(self.prev_episode_num)
self.button_next = Button(axnext, 'Next', color=axcolor, hovercolor='0.975')
self.button_next.on_clicked(self.next_episode_num)
# Timer
self.timer = self.fig.canvas.new_timer(interval=1000)
self.timer.add_callback(self.check_update)
self.timer.start()
# Progress data
self.axprogress.set_xmargin(0)
self.axprogress.set_xlabel('Episodes')
self.axprogress.set_ylabel('Reward')
self.axprogress.grid(True)
self.plot_progress()
# Plot latest episode
self.update_episode(self.num_episodes - 1)
plt.show()