本文整理汇总了Python中matplotlib.transforms.TransformWrapper方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.TransformWrapper方法的具体用法?Python transforms.TransformWrapper怎么用?Python transforms.TransformWrapper使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.transforms
的用法示例。
在下文中一共展示了transforms.TransformWrapper方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_figure
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def set_figure(self, fig):
"""
Set the `.Figure` for this `.Axes`.
Parameters
----------
fig : `.Figure`
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position,
fig.transFigure)
# these will be updated later as data is added
self.dataLim = mtransforms.Bbox.null()
self.viewLim = mtransforms.Bbox.unit()
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
self._set_lim_and_transforms()
示例2: set_figure
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def set_figure(self, fig):
"""
Set the class:`~matplotlib.axes.Axes` figure
accepts a class:`~matplotlib.figure.Figure` instance
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position,
fig.transFigure)
# these will be updated later as data is added
self.dataLim = mtransforms.Bbox.null()
self.viewLim = mtransforms.Bbox.unit()
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
self._set_lim_and_transforms()
示例3: set_figure
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def set_figure(self, fig):
"""
Set the `.Figure` for this `.Axes`.
.. ACCEPTS: `.Figure`
Parameters
----------
fig : `.Figure`
"""
martist.Artist.set_figure(self, fig)
self.bbox = mtransforms.TransformedBbox(self._position,
fig.transFigure)
# these will be updated later as data is added
self.dataLim = mtransforms.Bbox.null()
self.viewLim = mtransforms.Bbox.unit()
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
self._set_lim_and_transforms()
示例4: _set_lim_and_transforms
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def _set_lim_and_transforms(self):
"""
Set the *_xaxis_transform*, *_yaxis_transform*, *transScale*,
*transData*, *transLimits* and *transAxes* transformations.
.. note::
This method is primarily used by rectilinear projections of the
`~matplotlib.axes.Axes` class, and is meant to be overridden by
new kinds of projection axes that need different transformations
and limits. (See `~matplotlib.projections.polar.PolarAxes` for an
example.)
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor.
# It is assumed that this part will have non-linear components
# (e.g., for a log scale).
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
示例5: _set_lim_and_transforms
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def _set_lim_and_transforms(self):
"""
set the *dataLim* and *viewLim*
:class:`~matplotlib.transforms.Bbox` attributes and the
*transScale*, *transData*, *transLimits* and *transAxes*
transformations.
.. note::
This method is primarily used by rectilinear projections
of the :class:`~matplotlib.axes.Axes` class, and is meant
to be overridden by new kinds of projection axes that need
different transformations and limits. (See
:class:`~matplotlib.projections.polar.PolarAxes` for an
example.
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor.
# It is assumed that this part will have non-linear components
# (e.g., for a log scale).
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
示例6: _set_lim_and_transforms
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def _set_lim_and_transforms(self):
"""
set the *_xaxis_transform*, *_yaxis_transform*,
*transScale*, *transData*, *transLimits* and *transAxes*
transformations.
.. note::
This method is primarily used by rectilinear projections
of the :class:`~matplotlib.axes.Axes` class, and is meant
to be overridden by new kinds of projection axes that need
different transformations and limits. (See
:class:`~matplotlib.projections.polar.PolarAxes` for an
example.
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor.
# It is assumed that this part will have non-linear components
# (e.g., for a log scale).
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.transAxes, self.transData)
示例7: __init__
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def __init__(self):
self.identity = mtransforms.IdentityTransform()
self.identity2 = mtransforms.IdentityTransform()
# Force use of the more complex composition.
self.composite = mtransforms.CompositeGenericTransform(
self.identity,
self.identity2)
# Check parent -> child links of TransformWrapper.
self.wrapper = mtransforms.TransformWrapper(self.composite)
# Check child -> parent links of TransformWrapper.
self.composite2 = mtransforms.CompositeGenericTransform(
self.wrapper,
self.identity)
示例8: test_transform
# 需要导入模块: from matplotlib import transforms [as 别名]
# 或者: from matplotlib.transforms import TransformWrapper [as 别名]
def test_transform():
obj = TransformBlob()
pf = pickle.dumps(obj)
del obj
obj = pickle.loads(pf)
# Check parent -> child links of TransformWrapper.
assert obj.wrapper._child == obj.composite
# Check child -> parent links of TransformWrapper.
assert [v() for v in obj.wrapper._parents.values()] == [obj.composite2]
# Check input and output dimensions are set as expected.
assert obj.wrapper.input_dims == obj.composite.input_dims
assert obj.wrapper.output_dims == obj.composite.output_dims