本文整理汇总了Python中matplotlib.ticker.StrMethodFormatter方法的典型用法代码示例。如果您正苦于以下问题:Python ticker.StrMethodFormatter方法的具体用法?Python ticker.StrMethodFormatter怎么用?Python ticker.StrMethodFormatter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.ticker
的用法示例。
在下文中一共展示了ticker.StrMethodFormatter方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: wrap_formatter
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def wrap_formatter(formatter):
"""
Wraps formatting function or string in
appropriate matplotlib formatter type.
"""
if isinstance(formatter, ticker.Formatter):
return formatter
elif callable(formatter):
args = [arg for arg in _getargspec(formatter).args
if arg != 'self']
wrapped = formatter
if len(args) == 1:
def wrapped(val, pos=None):
return formatter(val)
return ticker.FuncFormatter(wrapped)
elif isinstance(formatter, basestring):
if re.findall(r"\{(\w+)\}", formatter):
return ticker.StrMethodFormatter(formatter)
else:
return ticker.FormatStrFormatter(formatter)
示例2: test_001_format_strings
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def test_001_format_strings(self):
conversions = [
("{x}", {'format_string': '', 'prefix': '', 'suffix': ''}),
("{x:#x}", {'format_string': '#x', 'prefix': '', 'suffix': ''}),
("{x:.2f}", {'format_string': '.2f', 'prefix': '', 'suffix': ''}),
("{x:.2%}", {'format_string': '.2%', 'prefix': '', 'suffix': ''}),
("P{x:.2%}", {'format_string': '.2%', 'prefix': 'P', 'suffix': ''}),
("P{x:.2%} 100", {'format_string': '.2%', 'prefix': 'P', 'suffix': ' 100'}),
]
for mpl_fmt, d3_fmt in conversions:
formatter = ticker.StrMethodFormatter(mpl_fmt)
cnvrt = StrMethodTickFormatterConvertor(formatter)
self.assertEqual(cnvrt.output, d3_fmt)
示例3: test_formatstrformatter
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def test_formatstrformatter():
# test % style formatter
tmp_form = mticker.FormatStrFormatter('%05d')
nose.tools.assert_equal('00002', tmp_form(2))
# test str.format() style formatter
tmp_form = mticker.StrMethodFormatter('{x:05d}')
nose.tools.assert_equal('00002', tmp_form(2))
示例4: test_basic
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def test_basic(self, format, input, expected):
fmt = mticker.StrMethodFormatter(format)
assert fmt(*input) == expected
示例5: plot_batchgen_distribution
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def plot_batchgen_distribution(cf, pids, p_probs, balance_target, out_file=None):
"""plot top n_pids probabilities for drawing a pid into a batch.
:param cf: experiment config object
:param pids: sorted iterable of patient ids
:param p_probs: pid's drawing likelihood, order needs to match the one of pids.
:param out_file:
:return:
"""
n_pids = len(pids)
zip_sorted = np.array(sorted(list(zip(p_probs, pids)), reverse=True))
names, probs = zip_sorted[:n_pids,1], zip_sorted[:n_pids,0].astype('float32') * 100
try:
names = [str(int(n)) for n in names]
except ValueError:
names = [str(n) for n in names]
lowest_p = min(p_probs)*100
fig, ax = plt.subplots(1,1,figsize=(17,5), dpi=200)
rects = ax.bar(names, probs, color=cf.blue, alpha=0.9, edgecolor=cf.blue)
ax = plt.gca()
ax.text(0.8, 0.92, "Lowest prob.: {:.5f}%".format(lowest_p), transform=ax.transAxes, color=cf.white,
bbox=dict(boxstyle='round', facecolor=cf.blue, edgecolor='none', alpha=0.9))
ax.yaxis.set_major_formatter(StrMethodFormatter('{x:g}'))
ax.set_xticklabels(names, rotation="vertical", fontsize=7)
plt.margins(x=0.01)
plt.subplots_adjust(bottom=0.15)
if balance_target=="class_targets":
balance_target = "Class"
elif balance_target=="lesion_gleasons":
balance_target = "GS"
ax.set_title(str(balance_target)+"-Balanced Train Generator: Sampling Likelihood per PID")
ax.set_axisbelow(True)
ax.grid(axis='y')
ax.set_ylabel("Sampling Likelihood (%)")
ax.set_xlabel("PID")
plt.tight_layout()
if out_file is not None:
plt.savefig(out_file)
plt.close()
示例6: plot_wbc_n_missing
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def plot_wbc_n_missing(cf, df, outfile, fs=11, ax=None):
""" WBC (weighted box clustering) has parameter n_missing, which shows how many boxes are missing per cluster.
This function plots the average relative amount of missing boxes sorted by cluster score.
:param cf: config.
:param df: dataframe.
:param outfile: path to save image under.
:param fs: fontsize.
:param ax: axes object.
"""
bins = np.linspace(0., 1., 10)
names = ["{:.1f}".format((bins[i]+(bins[i+1]-bins[i])/2.)*100) for i in range(len(bins)-1)]
classes = df.pred_class.unique()
colors = [cf.class_id2label[cl_id].color for cl_id in classes]
binned_df = df.copy()
binned_df.loc[:,"pred_score"] = pd.cut(binned_df["pred_score"], bins)
close=False
if ax is None:
ax = plt.subplot()
close=True
width = 1 / (len(classes) + 1)
group_positions = np.arange(len(names))
legend_handles = []
for ix, cl_id in enumerate(classes):
cl_df = binned_df[binned_df.pred_class==cl_id].groupby("pred_score").agg({"cluster_n_missing": 'mean'})
ax.bar(group_positions + ix * width, cl_df.cluster_n_missing.values, width=width, color=colors[ix],
alpha=0.4 + ix / 2 / len(classes), edgecolor=colors[ix])
legend_handles.append(mpatches.Patch(color=colors[ix], label=cf.class_dict[cl_id]))
title = "Fold {} WBC Missing Preds\nAverage over scores and classes: {:.1f}%".format(cf.fold, df.cluster_n_missing.mean())
ax.set_title(title, fontsize=fs)
ax.legend(handles=legend_handles, title="Class", loc="best", fontsize=fs, title_fontsize=fs)
ax.set_xticks(group_positions + (len(classes) - 1) * width / 2)
# ax.xaxis.set_major_formatter(StrMethodFormatter('{x:.1f}')) THIS WONT WORK... no clue!
ax.set_xticklabels(names)
ax.tick_params(axis='both', which='major', labelsize=fs)
ax.tick_params(axis='both', which='minor', labelsize=fs)
ax.set_axisbelow(True)
ax.grid()
ax.set_ylabel(r"Average Missing Preds per Cluster (%)", fontsize=fs)
ax.set_xlabel("Prediction Score", fontsize=fs)
if close:
if cf.server_env:
IO_safe(plt.savefig, fname=outfile, _raise=False)
else:
plt.savefig(outfile)
plt.close()
示例7: plot_batchgen_stats
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def plot_batchgen_stats(cf, stats, empties, target_name, unique_ts, out_file=None):
"""Plot bar chart showing RoI frequencies and empty-sample count of batch stats recorded by BatchGenerator.
:param cf: config.
:param stats: statistics as supplied by BatchGenerator class.
:param out_file: path to save plot.
"""
total_samples = cf.num_epochs*cf.num_train_batches*cf.batch_size
if target_name=="class_targets":
target_name = "Class"
label_dict = {cl_id: label for (cl_id, label) in cf.class_id2label.items()}
elif target_name=="lesion_gleasons":
target_name = "Lesion's Gleason Score"
label_dict = cf.gs2label
elif target_name=="rg_bin_targets":
target_name = "Regression-Bin ID"
label_dict = cf.bin_id2label
else:
raise NotImplementedError
names = [label_dict[t_id].name for t_id in unique_ts]
colors = [label_dict[t_id].color for t_id in unique_ts]
title = "Training Target Frequencies"
title += "\nempty samples: {}".format(empties)
rects = plt.bar(names, stats['roi_counts'], color=colors, alpha=0.9, edgecolor=colors)
ax = plt.gca()
ax.yaxis.set_major_formatter(StrMethodFormatter('{x:g}'))
ax.set_title(title)
ax.set_axisbelow(True)
ax.grid()
ax.set_ylabel(r"#RoIs")
ax.set_xlabel(target_name)
total_count = np.sum(stats["roi_counts"])
labels = ["{:.0f}%".format(count/total_count*100) for count in stats["roi_counts"]]
label_bar(ax, rects, labels, colors)
if out_file is not None:
plt.savefig(out_file)
plt.close()
示例8: render_danger_temps_graph
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import StrMethodFormatter [as 别名]
def render_danger_temps_graph(date_list, temp_list, graph_path, ymin, ymax, toocold, dangercold, toohot, dangerhot):
print("Making EpiphanyHermit's damger temps by hour graph...")
from matplotlib.lines import Line2D
from matplotlib.patches import Polygon
from matplotlib.ticker import StrMethodFormatter
# Colors for the danger temps
dangercoldColor = 'xkcd:purplish blue'
toocoldColor = 'xkcd:light blue'
toohotColor = 'xkcd:orange'
dangerhotColor = 'xkcd:red'
# Group the data by hour
dangerhotArray = [0]*24
toohotArray = [0]*24
toocoldArray = [0]*24
dangercoldArray = [0]*24
for i in range(len(date_list)):
h = int(date_list[i].strftime('%H'))
if temp_list[i] >= dangerhot:
dangerhotArray[h] += 1
elif temp_list[i] >= toohot:
toohotArray[h] += 1
elif temp_list[i] <= dangercold:
dangercoldArray[h] += 1
elif temp_list[i] <= toocold:
toocoldArray[h] += 1
ind = np.arange(24) # the x locations for the groups
width = 0.25 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(ind - width/2, dangercoldArray, width, yerr=None, color=dangercoldColor, label='DC')
rects2 = ax.bar(ind - width/4, toocoldArray, width, yerr=None, color=toocoldColor, label='TC')
rects3 = ax.bar(ind + width/4, toohotArray, width, yerr=None, color=toohotColor, label='TH')
rects4 = ax.bar(ind + width/2, dangerhotArray, width, yerr=None, color=dangerhotColor, label='DH')
# Add some text for labels, title and custom x-axis tick labels, etc.
fig.suptitle('Dangerous Temperature by Hour', fontsize=14, fontweight='bold')
ax.set_ylabel('Counts')
ax.set_title(min(date_list).strftime("%B %d, %Y") + ' - ' + max(date_list).strftime("%B %d, %Y"), fontsize=10)
ax.set_xticks(ind)
labels = ('00:00', '01:00', '02:00', '03:00', '04:00','05:00','06:00','07:00','08:00','09:00','10:00','11:00','12:00','13:00','14:00','15:00','16:00','17:00','18:00','19:00','20:00','21:00','22:00','23:00')
ax.set_xticklabels(labels,rotation=45)
ax.legend()
print("danger temps created and saved to " + graph_path)
plt.savefig(graph_path)
fig.clf()