当前位置: 首页>>代码示例>>Python>>正文


Python ticker.LogFormatterSciNotation方法代码示例

本文整理汇总了Python中matplotlib.ticker.LogFormatterSciNotation方法的典型用法代码示例。如果您正苦于以下问题:Python ticker.LogFormatterSciNotation方法的具体用法?Python ticker.LogFormatterSciNotation怎么用?Python ticker.LogFormatterSciNotation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.ticker的用法示例。


在下文中一共展示了ticker.LogFormatterSciNotation方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: minorticks_on

# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import LogFormatterSciNotation [as 别名]
def minorticks_on(self):
        """
        Turns on the minor ticks on the colorbar without extruding
        into the "extend regions".
        """
        ax = self.ax
        long_axis = ax.yaxis if self.orientation == 'vertical' else ax.xaxis

        if long_axis.get_scale() == 'log':
            long_axis.set_minor_locator(_ColorbarLogLocator(self, base=10.,
                                                            subs='auto'))
            long_axis.set_minor_formatter(ticker.LogFormatterSciNotation())
        else:
            long_axis.set_minor_locator(_ColorbarAutoMinorLocator(self)) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:16,代码来源:colorbar.py

示例2: update_ticks

# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import LogFormatterSciNotation [as 别名]
def update_ticks(self):
        """
        Force the update of the ticks and ticklabels. This must be
        called whenever the tick locator and/or tick formatter changes.
        """
        ax = self.ax
        # get the locator and formatter.  Defaults to
        # self.locator if not None..
        locator, formatter = self._get_ticker_locator_formatter()

        if self.orientation == 'vertical':
            long_axis, short_axis = ax.yaxis, ax.xaxis
        else:
            long_axis, short_axis = ax.xaxis, ax.yaxis

        if self._use_auto_colorbar_locator():
            _log.debug('Using auto colorbar locator on colorbar')
            _log.debug('locator: %r', locator)
            long_axis.set_major_locator(locator)
            long_axis.set_major_formatter(formatter)
            if type(self.norm) == colors.LogNorm:
                long_axis.set_minor_locator(_ColorbarLogLocator(self,
                            base=10., subs='auto'))
                long_axis.set_minor_formatter(
                    ticker.LogFormatterSciNotation()
                )
        else:
            _log.debug('Using fixed locator on colorbar')
            ticks, ticklabels, offset_string = self._ticker(locator, formatter)
            long_axis.set_ticks(ticks)
            long_axis.set_ticklabels(ticklabels)
            long_axis.get_major_formatter().set_offset_string(offset_string) 
开发者ID:holzschu,项目名称:python3_ios,代码行数:34,代码来源:colorbar.py

示例3: test_basic

# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import LogFormatterSciNotation [as 别名]
def test_basic(self, base, value, expected):
        formatter = mticker.LogFormatterSciNotation(base=base)
        formatter.sublabel = {1, 2, 5, 1.2}
        with matplotlib.rc_context({'text.usetex': False}):
            assert formatter(value) == expected 
开发者ID:holzschu,项目名称:python3_ios,代码行数:7,代码来源:test_ticker.py

示例4: _get_ticker_locator_formatter

# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import LogFormatterSciNotation [as 别名]
def _get_ticker_locator_formatter(self):
        """
        This code looks at the norm being used by the colorbar
        and decides what locator and formatter to use.  If ``locator`` has
        already been set by hand, it just returns
        ``self.locator, self.formatter``.
        """
        locator = self.locator
        formatter = self.formatter
        if locator is None:
            if self.boundaries is None:
                if isinstance(self.norm, colors.NoNorm):
                    nv = len(self._values)
                    base = 1 + int(nv / 10)
                    locator = ticker.IndexLocator(base=base, offset=0)
                elif isinstance(self.norm, colors.BoundaryNorm):
                    b = self.norm.boundaries
                    locator = ticker.FixedLocator(b, nbins=10)
                elif isinstance(self.norm, colors.LogNorm):
                    locator = _ColorbarLogLocator(self)
                elif isinstance(self.norm, colors.SymLogNorm):
                    # The subs setting here should be replaced
                    # by logic in the locator.
                    locator = ticker.SymmetricalLogLocator(
                                      subs=np.arange(1, 10),
                                      linthresh=self.norm.linthresh,
                                      base=10)
                else:
                    if mpl.rcParams['_internal.classic_mode']:
                        locator = ticker.MaxNLocator()
                    else:
                        locator = _ColorbarAutoLocator(self)
            else:
                b = self._boundaries[self._inside]
                locator = ticker.FixedLocator(b, nbins=10)

        if formatter is None:
            if isinstance(self.norm, colors.LogNorm):
                formatter = ticker.LogFormatterSciNotation()
            elif isinstance(self.norm, colors.SymLogNorm):
                formatter = ticker.LogFormatterSciNotation(
                                        linthresh=self.norm.linthresh)
            else:
                formatter = ticker.ScalarFormatter()
        else:
            formatter = self.formatter

        self.locator = locator
        self.formatter = formatter
        _log.debug('locator: %r', locator)
        return locator, formatter 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:53,代码来源:colorbar.py

示例5: exportSingleParameterLossChart

# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import LogFormatterSciNotation [as 别名]
def exportSingleParameterLossChart(self, fileName, results, parameter, valueKey='loss', title='Loss Chart', cutoff=1.0, numBuckets=None, reduction='mean'):
        values, linearTrendLine, exponentialTrendLine = self.computeParameterResultValues(results, parameter, valueKey, cutoff, numBuckets, bucket_reduction=reduction)

        if self.singleParameterLossFigure is None:
            fig, ax = plt.subplots()
            self.singleParameterLossFigure = fig
            self.singleParameterLossAxes = ax
        else:
            fig = self.singleParameterLossFigure
            ax = self.singleParameterLossAxes
            ax.clear()

        fig.suptitle(title + " for " + parameter.root[5:])

        if parameter.config.get('scaling', 'linear') == 'logarithmic':
            ax.set_xscale('log')
        else:
            ax.set_xscale('linear')

        xCoords = [value[parameter.root[5:]] for value in values]
        yCoords = [value[valueKey] for value in values]

        ax.set_xlabel(parameter.root[5:])
        ax.set_ylabel(valueKey)

        ax.scatter(xCoords, yCoords)

        minVal = parameter.config.get('min')
        maxVal = parameter.config.get('max')
        if (minVal > 0.001 and minVal < 10000 and maxVal > 0.001 and maxVal < 10000):
            ax.xaxis.set_minor_formatter(mticker.ScalarFormatter())
            ax.xaxis.set_major_formatter(mticker.ScalarFormatter())
        else:
            ax.xaxis.set_minor_formatter(mticker.LogFormatterSciNotation())
            ax.xaxis.set_major_formatter(mticker.LogFormatterSciNotation())

        # Preserve the limits of the scatter graph when we apply the trend line
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()

        if linearTrendLine and exponentialTrendLine:
            trendLineXCoords = [linearTrendLine[index][0] for index in range(len(linearTrendLine))]
            ax.plot(trendLineXCoords, [(linearTrendLine[index][1], exponentialTrendLine[index][1]) for index in range(len(exponentialTrendLine))], color='red', linestyle='dashed')
        elif linearTrendLine:
            trendLineXCoords = [linearTrendLine[index][0] for index in range(len(linearTrendLine))]
            ax.plot(trendLineXCoords, [linearTrendLine[index][1] for index in range(len(linearTrendLine))], color='red', linestyle='dashed')
        elif exponentialTrendLine:
            trendLineXCoords = [exponentialTrendLine[index][0] for index in range(len(linearTrendLine))]
            ax.plot(trendLineXCoords, [exponentialTrendLine[index][1] for index in range(len(exponentialTrendLine))], color='red', linestyle='dashed')

        ax.set_xlim(xlim)
        ax.set_ylim(ylim)

        fig.set_tight_layout(True)
        fig.savefig(fileName, dpi=200)
        plt.close(fig) 
开发者ID:electricbrainio,项目名称:hypermax,代码行数:58,代码来源:results_analyzer.py


注:本文中的matplotlib.ticker.LogFormatterSciNotation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。