本文整理汇总了Python中matplotlib.ticker.FixedFormatter方法的典型用法代码示例。如果您正苦于以下问题:Python ticker.FixedFormatter方法的具体用法?Python ticker.FixedFormatter怎么用?Python ticker.FixedFormatter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.ticker
的用法示例。
在下文中一共展示了ticker.FixedFormatter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, update_ticks=True):
"""
set tick labels. Tick labels are updated immediately unless
update_ticks is *False*. To manually update the ticks, call
*update_ticks* method explicitly.
"""
if isinstance(self.locator, ticker.FixedLocator):
self.formatter = ticker.FixedFormatter(ticklabels)
if update_ticks:
self.update_ticks()
else:
warnings.warn("set_ticks() must have been called.")
示例2: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, *args, **kwargs):
"""
Set the text values of the tick labels. Return a list of Text
instances. Use *kwarg* *minor=True* to select minor ticks.
All other kwargs are used to update the text object properties.
As for get_ticklabels, label1 (left or bottom) is
affected for a given tick only if its label1On attribute
is True, and similarly for label2. The list of returned
label text objects consists of all such label1 objects followed
by all such label2 objects.
The input *ticklabels* is assumed to match the set of
tick locations, regardless of the state of label1On and
label2On.
ACCEPTS: sequence of strings
"""
#ticklabels = [str(l) for l in ticklabels]
minor = kwargs.pop('minor', False)
if minor:
self.set_minor_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_minor_ticks()
else:
self.set_major_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_major_ticks()
ret1 = []
ret2 = []
for i, tick in enumerate(ticks):
if i < len(ticklabels):
if tick.label1On:
tick.label1.set_text(ticklabels[i])
tick.label1.update(kwargs)
ret1.append(tick.label1)
if tick.label2On:
tick.label2.set_text(ticklabels[i])
ret2.append(tick.label2)
tick.label2.update(kwargs)
return ret1 + ret2
示例3: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, update_ticks=True):
"""
Set tick labels.
Tick labels are updated immediately unless *update_ticks* is *False*,
in which case one should call `.update_ticks` explicitly.
"""
if isinstance(self.locator, ticker.FixedLocator):
self.formatter = ticker.FixedFormatter(ticklabels)
if update_ticks:
self.update_ticks()
else:
cbook._warn_external("set_ticks() must have been called.")
self.stale = True
示例4: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, update_ticks=True):
"""
set tick labels. Tick labels are updated immediately unless
update_ticks is *False*. To manually update the ticks, call
*update_ticks* method explicitly.
"""
if isinstance(self.locator, ticker.FixedLocator):
self.formatter = ticker.FixedFormatter(ticklabels)
if update_ticks:
self.update_ticks()
else:
warnings.warn("set_ticks() must have been called.")
self.stale = True
示例5: test_autofmt_xdate
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def test_autofmt_xdate(which):
date = ['3 Jan 2013', '4 Jan 2013', '5 Jan 2013', '6 Jan 2013',
'7 Jan 2013', '8 Jan 2013', '9 Jan 2013', '10 Jan 2013',
'11 Jan 2013', '12 Jan 2013', '13 Jan 2013', '14 Jan 2013']
time = ['16:44:00', '16:45:00', '16:46:00', '16:47:00', '16:48:00',
'16:49:00', '16:51:00', '16:52:00', '16:53:00', '16:55:00',
'16:56:00', '16:57:00']
angle = 60
minors = [1, 2, 3, 4, 5, 6, 7]
x = mdates.datestr2num(date)
y = mdates.datestr2num(time)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.yaxis_date()
ax.xaxis_date()
ax.xaxis.set_minor_locator(AutoMinorLocator(2))
ax.xaxis.set_minor_formatter(FixedFormatter(minors))
fig.autofmt_xdate(0.2, angle, 'right', which)
if which in ('both', 'major', None):
for label in fig.axes[0].get_xticklabels(False, 'major'):
assert int(label.get_rotation()) == angle
if which in ('both', 'minor'):
for label in fig.axes[0].get_xticklabels(True, 'minor'):
assert int(label.get_rotation()) == angle
示例6: draw_spectrogram
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def draw_spectrogram(example_wav="musb_005_angela thomas wade_audio_model_without_context_cut_28234samples_61002samples_93770samples_126538.wav"):
y, sr = Utils.load(example_wav, sr=None)
spec = np.abs(librosa.stft(y, 512, 256, 512))
norm_spec = librosa.power_to_db(spec**2)
black_time_frames = np.array([28234, 61002, 93770, 126538]) / 256.0
fig, ax = plt.subplots()
img = ax.imshow(norm_spec)
plt.vlines(black_time_frames, [0, 0, 0, 0], [10, 10, 10, 10], colors="red", lw=2, alpha=0.5)
plt.vlines(black_time_frames, [256, 256, 256, 256], [246, 246, 246, 246], colors="red", lw=2, alpha=0.5)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.1)
plt.colorbar(img, cax=cax)
ax.xaxis.set_label_position("bottom")
#ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * 256.0 / sr))
#ax.xaxis.set_major_formatter(ticks_x)
ax.xaxis.set_major_locator(ticker.FixedLocator(([i * sr / 256. for i in range(len(y)//sr + 1)])))
ax.xaxis.set_major_formatter(ticker.FixedFormatter(([str(i) for i in range(len(y)//sr + 1)])))
ax.yaxis.set_major_locator(ticker.FixedLocator(([float(i) * 2000.0 / (sr/2.0) * 256. for i in range(6)])))
ax.yaxis.set_major_formatter(ticker.FixedFormatter([str(i*2) for i in range(6)]))
ax.set_xlabel("t (s)")
ax.set_ylabel('f (KHz)')
fig.set_size_inches(7., 3.)
fig.savefig("spectrogram_example.pdf", bbox_inches='tight')
示例7: plot_section_by_name
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def plot_section_by_name(self, section_name, show_data=True, show_faults=True, show_topo=True,
show_all_data=False, contourplot=True, radius='default', **kwargs):
if self.model.solutions.sections is None:
raise AttributeError('no sections for plotting defined')
if section_name not in self.model._grid.sections.names:
raise AttributeError(f'Section "{section_name}" is not defined. '
f'Available sections for plotting: {self.model._grid.sections.names}')
j = np.where(self.model._grid.sections.names == section_name)[0][0]
l0, l1 = self.model._grid.sections.get_section_args(section_name)
shape = self.model._grid.sections.resolution[j]
image = self.model.solutions.sections[0][0][l0:l1].reshape(shape[0], shape[1]).T
extent = [0, self.model._grid.sections.dist[j][0],
self.model._grid.regular_grid.extent[4], self.model._grid.regular_grid.extent[5]]
if show_data:
self.plot_section_data(section_name=section_name, show_all_data=show_all_data, radius=radius)
axes = plt.gca()
axes.imshow(image, origin='lower', zorder=-100,
cmap=self._cmap, norm=self._norm, extent=extent)
if show_faults and not contourplot:
self.extract_section_lines(section_name, axes, faults_only=True)
else:
self.extract_section_lines(section_name, axes, faults_only=False)
if show_topo:
if self.model._grid.topography is not None:
alpha = kwargs.get('alpha', 1)
xy = self.make_topography_overlay_4_sections(j)
axes.fill(xy[:, 0], xy[:, 1], 'k', zorder=10, alpha=alpha)
labels, axname = self._make_section_xylabels(section_name, len(axes.get_xticklabels()) - 1)
pos_list = np.linspace(0, self.model._grid.sections.dist[j], len(labels))
axes.xaxis.set_major_locator(FixedLocator(nbins=len(labels), locs=pos_list))
axes.xaxis.set_major_formatter(FixedFormatter((labels)))
axes.set(title=self.model._grid.sections.names[j], xlabel=axname, ylabel='Z')
示例8: plot_section_scalarfield
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def plot_section_scalarfield(self, section_name, sn, levels=50, show_faults=True, show_topo=True, lithback=True):
if self.model.solutions.sections is None:
raise AttributeError('no sections for plotting defined')
if self.model._grid.topography is None:
show_topo = False
shapes = self.model._grid.sections.resolution
fig = plt.figure(figsize=(16, 10))
axes = fig.add_subplot(1, 1, 1)
j = np.where(self.model._grid.sections.names == section_name)[0][0]
l0, l1 = self.model._grid.sections.get_section_args(section_name)
if show_faults:
self.extract_section_fault_lines(section_name, zorder=9)
if show_topo:
xy = self.make_topography_overlay_4_sections(j)
axes.fill(xy[:, 0], xy[:, 1], 'k', zorder=10)
axes.contour(self.model.solutions.sections[1][sn][l0:l1].reshape(shapes[j][0], shapes[j][1]).T,
# origin='lower',
levels=levels, cmap='autumn', extent=[0, self.model._grid.sections.dist[j],
self.model._grid.regular_grid.extent[4],
self.model._grid.regular_grid.extent[5]], zorder=8)
axes.set_aspect('equal')
if lithback:
axes.imshow(self.model.solutions.sections[0][0][l0:l1].reshape(shapes[j][0], shapes[j][1]).T,
origin='lower',
cmap=self._cmap, norm=self._norm, extent=[0, self.model._grid.sections.dist[j],
self.model._grid.regular_grid.extent[4],
self.model._grid.regular_grid.extent[5]])
labels, axname = self._make_section_xylabels(section_name, len(axes.get_xticklabels()))
pos_list = np.linspace(0, self.model._grid.sections.dist[j], len(labels))
axes.xaxis.set_major_locator(FixedLocator(nbins=len(labels), locs=pos_list))
axes.xaxis.set_major_formatter(FixedFormatter((labels)))
axes.set(title=self.model._grid.sections.names[j], xlabel=axname, ylabel='Z')
示例9: draw_example_graph
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def draw_example_graph(dataset, trial_path):
results = []
with open(trial_path + "/rotation_single_x.csv") as file:
reader = csv.reader(file)
for row in reader:
result = [float(r) for r in row] # ex [0, 45, 90, 135, 180, 225, 270, 315]
results.append([*result[len(result) // 2:], *result[:len(result) // 2 + 1]])
major_tick = MultipleLocator(18)
major_formatter = FixedFormatter(["", "-180", "-90", "0", "+90", "+180"])
minor_tick = MultipleLocator(9)
x = np.arange(len(results[0]))
# Draw figure
for j in range(0, min(len(results), 5)):
if "bace" in trial_path or "hiv" in trial_path:
plt.figure(figsize=(8, 2.5))
ax = plt.subplot(1, 1, 1)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.plot(x, results[j], color="#000000", linewidth=2)
# Left ticks
ax.xaxis.set_major_locator(major_tick)
ax.xaxis.set_major_formatter(major_formatter)
ax.xaxis.set_minor_locator(minor_tick)
ax.xaxis.set_minor_formatter(NullFormatter())
plt.ylim(0, 1)
plt.yticks(np.arange(0, 1.01, 0.5), ("0.0", "0.5", "1.0"))
fig_name = "../../experiment/figure/ex/rotation_single_{}_{}_x.png".format(dataset, j)
plt.savefig(fig_name, dpi=600)
plt.clf()
print("Saved figure on {}".format(fig_name))
else:
# Figure
plt.figure(figsize=(8, 2.5))
ax = plt.subplot(1, 1, 1)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
y = results[j]
mean_y = np.average(y)
ylim = (mean_y - 1.5, mean_y + 1.5)
plt.plot(x, y, color="#000000", linewidth=2)
# Ticks
ax.xaxis.set_major_locator(major_tick)
ax.xaxis.set_major_formatter(major_formatter)
ax.xaxis.set_minor_locator(minor_tick)
ax.xaxis.set_minor_formatter(NullFormatter())
plt.ylim(ylim)
fig_name = "../../experiment/figure/ex/rotation_single_{}_{}_x.png".format(dataset, j)
plt.savefig(fig_name, dpi=600)
plt.clf()
print("Saved figure on {}".format(fig_name))
示例10: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, *args, minor=False, **kwargs):
r"""
Set the text values of the tick labels.
Parameters
----------
ticklabels : sequence of str or of `Text`\s
List of texts for tick labels; must include values for non-visible
labels.
minor : bool
If True, set minor ticks instead of major ticks.
**kwargs
Text properties.
Returns
-------
labels : list of `Text`\s
For each tick, includes ``tick.label1`` if it is visible, then
``tick.label2`` if it is visible, in that order.
"""
if args:
cbook.warn_deprecated(
"3.1", message="Additional positional arguments to "
"set_ticklabels are ignored, and deprecated since Matplotlib "
"3.1; passing them will raise a TypeError in Matplotlib 3.3.")
get_labels = []
for t in ticklabels:
# try calling get_text() to check whether it is Text object
# if it is Text, get label content
try:
get_labels.append(t.get_text())
# otherwise add the label to the list directly
except AttributeError:
get_labels.append(t)
# replace the ticklabels list with the processed one
ticklabels = get_labels
if minor:
self.set_minor_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_minor_ticks()
else:
self.set_major_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_major_ticks()
ret = []
for tick_label, tick in zip(ticklabels, ticks):
# deal with label1
tick.label1.set_text(tick_label)
tick.label1.update(kwargs)
# deal with label2
tick.label2.set_text(tick_label)
tick.label2.update(kwargs)
# only return visible tick labels
if tick.label1.get_visible():
ret.append(tick.label1)
if tick.label2.get_visible():
ret.append(tick.label2)
self.stale = True
return ret
示例11: set_ticklabels
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def set_ticklabels(self, ticklabels, *args, minor=False, **kwargs):
"""
Set the text values of the tick labels. Return a list of Text
instances. Use *kwarg* *minor=True* to select minor ticks.
All other kwargs are used to update the text object properties.
As for get_ticklabels, label1 (left or bottom) is
affected for a given tick only if its label1On attribute
is True, and similarly for label2. The list of returned
label text objects consists of all such label1 objects followed
by all such label2 objects.
The input *ticklabels* is assumed to match the set of
tick locations, regardless of the state of label1On and
label2On.
ACCEPTS: sequence of strings or Text objects
"""
get_labels = []
for t in ticklabels:
# try calling get_text() to check whether it is Text object
# if it is Text, get label content
try:
get_labels.append(t.get_text())
# otherwise add the label to the list directly
except AttributeError:
get_labels.append(t)
# replace the ticklabels list with the processed one
ticklabels = get_labels
if minor:
self.set_minor_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_minor_ticks()
else:
self.set_major_formatter(mticker.FixedFormatter(ticklabels))
ticks = self.get_major_ticks()
ret = []
for tick_label, tick in zip(ticklabels, ticks):
# deal with label1
tick.label1.set_text(tick_label)
tick.label1.update(kwargs)
# deal with label2
tick.label2.set_text(tick_label)
tick.label2.update(kwargs)
# only return visible tick labels
if tick.label1On:
ret.append(tick.label1)
if tick.label2On:
ret.append(tick.label2)
self.stale = True
return ret
示例12: fp_per_scan
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def fp_per_scan(logit, label) :
logit = np.reshape(logit, -1)
label = np.reshape(label, -1)
logit = logit[logit >= 0]
label = label[label >= 0]
logit = np.where(logit >= 1.0, logit-1, logit)
label = np.where(label >= 1.0, label-1, label)
fpr, tpr, th = roc_curve(label, logit, pos_label=1.0)
negative_samples = np.count_nonzero(label == 0.0)
fps = fpr * negative_samples
"""
mean_sens = np.mean(sens_list)
matplotlib.use('Agg')
ax = plt.gca()
plt.plot(fps_itp, sens_itp)
# https://matplotlib.org/devdocs/api/_as_gen/matplotlib.pyplot.grid.html
plt.xlim(MIN_FROC, MAX_FROC)
plt.ylim(0, 1.1)
plt.xlabel('Average number of false positives per scan')
plt.ylabel('Sensitivity')
# plt.legend(loc='lower right')
# plt.legend(loc=9)
plt.title('Average sensitivity = %.4f' % (mean_sens))
plt.xscale('log', basex=2)
ax.xaxis.set_major_formatter(FixedFormatter(fp_list))
ax.xaxis.set_ticks(fp_list)
ax.yaxis.set_ticks(np.arange(0, 1.1, 0.1))
plt.grid(b=True, linestyle='dotted', which='both')
plt.tight_layout()
# plt.show()
plt.savefig('result.png', bbox_inches=0, dpi=300)
"""
return np.asarray(fps), np.asarray(tpr)
示例13: plot_all_sections
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def plot_all_sections(self, show_data=False, section_names=None, show_topo=True,
figsize=(12, 12)):
if self.model.solutions.sections is None:
raise AttributeError('no sections for plotting defined')
if self.model._grid.topography is None:
show_topo = False
if section_names is not None:
if isinstance(section_names, list):
section_names = np.array(section_names)
else:
section_names = self.model._grid.sections.names
shapes = self.model._grid.sections.resolution
fig, axes = plt.subplots(nrows=len(section_names), ncols=1, figsize=figsize)
for i, section in enumerate(section_names):
j = np.where(self.model._grid.sections.names == section)[0][0]
l0, l1 = self.model._grid.sections.get_section_args(section)
self.extract_section_lines(section, axes[i], faults_only=False)
if show_topo:
xy = self.make_topography_overlay_4_sections(j)
axes[i].fill(xy[:, 0], xy[:, 1], 'k', zorder=10)
# if show_data:
# section = str(section)
# print(section)
# self.plot_section_data(section_name=section)
axes[i].imshow(self.model.solutions.sections[0][0][l0:l1].reshape(shapes[j][0], shapes[j][1]).T,
origin='lower', zorder=-100,
cmap=self._cmap, norm=self._norm, extent=[0, self.model._grid.sections.dist[j],
self.model._grid.regular_grid.extent[4],
self.model._grid.regular_grid.extent[5]])
labels, axname = self._make_section_xylabels(section, len(axes[i].get_xticklabels()) - 1)
pos_list = np.linspace(0, self.model._grid.sections.dist[j], len(labels))
axes[i].xaxis.set_major_locator(FixedLocator(nbins=len(labels), locs=pos_list))
axes[i].xaxis.set_major_formatter(FixedFormatter((labels)))
axes[i].set(title=self.model._grid.sections.names[j], xlabel=axname, ylabel='Z')
fig.tight_layout()
示例14: add_section
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def add_section(self, section_name=None, cell_number=None, direction='y', ax=None, ax_pos=111,
ve=1., **kwargs):
extent_val = kwargs.get('extent', None)
self.update_colot_lot()
if ax is None:
ax = self.fig.add_subplot(ax_pos)
if section_name is not None:
if section_name == 'topography':
ax.set_title('Geological map')
ax.set_xlabel('X')
ax.set_ylabel('Y')
extent_val = self.model._grid.topography.extent
else:
dist = self.model._grid.sections.df.loc[section_name, 'dist']
extent_val = [0, dist,
self.model._grid.regular_grid.extent[4], self.model._grid.regular_grid.extent[5]]
labels, axname = self._make_section_xylabels(section_name, len(ax.get_xticklabels()) - 2)
pos_list = np.linspace(0, dist, len(labels))
ax.xaxis.set_major_locator(FixedLocator(nbins=len(labels), locs=pos_list))
ax.xaxis.set_major_formatter(FixedFormatter((labels)))
ax.set(title=section_name, xlabel=axname, ylabel='Z')
elif cell_number is not None:
_a, _b, _c, extent_val, x, y = self._slice(direction, cell_number)[:-2]
ax.set_xlabel(x)
ax.set_ylabel(y)
ax.set(title='Cell Number: ' + str(cell_number) + ' Direction: ' + str(direction))
if extent_val is not None:
if extent_val[3] < extent_val[2]: # correct vertical orientation of plot
ax.invert_yaxis()
self._aspect = (extent_val[3] - extent_val[2]) / (extent_val[1] - extent_val[0]) / ve
ax.set_xlim(extent_val[0], extent_val[1])
ax.set_ylim(extent_val[2], extent_val[3])
ax.set_aspect('equal')
# Adding some properties to the axes to make easier to plot
ax.section_name = section_name
ax.cell_number = cell_number
ax.direction = direction
ax.tick_params(axis='x', labelrotation=30)
self.axes = np.append(self.axes, ax)
self.fig.tight_layout()
return ax
示例15: plot_pssm
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import FixedFormatter [as 别名]
def plot_pssm(matrix, title):
""" Plot pssm in matrix """
#Make figure
fig, ax = plt.subplots()
fig.suptitle(title, fontsize=16, weight="bold")
#Formatting of x axis
length = matrix.shape[1]
flank = int(length/2.0)
xvals = np.arange(length) # each position corresponds to i in mat
#Customize minor tick labels
xtick_pos = xvals[:-1] + 0.5
xtick_labels = list(range(-flank, flank))
ax.xaxis.set_major_locator(ticker.FixedLocator(xvals))
ax.xaxis.set_major_formatter(ticker.FixedFormatter(xtick_labels))
ax.xaxis.set_minor_locator(ticker.FixedLocator(xtick_pos)) #locate minor ticks between major ones (cutsites)
ax.xaxis.set_minor_formatter(ticker.NullFormatter())
#Make background grid on major ticks
plt.grid(color='0.8', which="minor", ls="--", axis="x")
plt.xlim([0, length-1])
plt.xlabel('Position from cutsite')
plt.ylabel('PSSM score')
######## Plot data #######
#Plot PSSM / bias motif
for nuc in range(4):
plt.plot(xvals, matrix[nuc,:], color=colors[nuc], label=names[nuc])
#Cutsite-line
plt.axvline(flank-0.5, linewidth=2, color="black", zorder=100)
#Finish up
plt.legend(loc="lower right")
plt.tight_layout()
fig.subplots_adjust(top=0.88, hspace=0.5)
return(fig)
#----------------------------------------------------------------------------------------------------#