本文整理汇总了Python中matplotlib.ticker.AutoMinorLocator方法的典型用法代码示例。如果您正苦于以下问题:Python ticker.AutoMinorLocator方法的具体用法?Python ticker.AutoMinorLocator怎么用?Python ticker.AutoMinorLocator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.ticker
的用法示例。
在下文中一共展示了ticker.AutoMinorLocator方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __setup_plot
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def __setup_plot(self):
figure = Figure(facecolor='lightgrey')
self._axes = figure.add_subplot(111)
self._axes.set_title('Timeline')
self._axes.set_xlabel('Time')
self._axes.set_ylabel('Frequency (MHz)')
self._axes.grid(True)
locator = AutoDateLocator()
formatter = AutoDateFormatter(locator)
self._axes.xaxis.set_major_formatter(formatter)
self._axes.xaxis.set_major_locator(locator)
formatter = ScalarFormatter(useOffset=False)
self._axes.yaxis.set_major_formatter(formatter)
self._axes.yaxis.set_minor_locator(AutoMinorLocator(10))
self._canvas = FigureCanvas(self._panelPlot, -1, figure)
self._canvas.mpl_connect('motion_notify_event', self.__on_motion)
Legend.__init__(self, self._axes, self._canvas)
示例2: minorticks_on
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def minorticks_on(self):
"""
Display minor ticks on the axes.
Displaying minor ticks may reduce performance; you may turn them off
using `minorticks_off()` if drawing speed is a problem.
"""
for ax in (self.xaxis, self.yaxis):
scale = ax.get_scale()
if scale == 'log':
s = ax._scale
ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
elif scale == 'symlog':
s = ax._scale
ax.set_minor_locator(
mticker.SymmetricalLogLocator(s._transform, s.subs))
else:
ax.set_minor_locator(mticker.AutoMinorLocator())
示例3: minorticks_on
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def minorticks_on(self):
'Add autoscaling minor ticks to the axes.'
for ax in (self.xaxis, self.yaxis):
if ax.get_scale() == 'log':
s = ax._scale
ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
else:
ax.set_minor_locator(mticker.AutoMinorLocator())
示例4: __init__
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def __init__(self, colorbar, n=None):
"""
This ticker needs to know the *colorbar* so that it can access
its *vmin* and *vmax*.
"""
self._colorbar = colorbar
self.ndivs = n
ticker.AutoMinorLocator.__init__(self, n=None)
示例5: __call__
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def __call__(self):
vmin = self._colorbar.norm.vmin
vmax = self._colorbar.norm.vmax
ticks = ticker.AutoMinorLocator.__call__(self)
rtol = (vmax - vmin) * 1e-10
return ticks[(ticks >= vmin - rtol) & (ticks <= vmax + rtol)]
示例6: test_low_number_of_majorticks
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def test_low_number_of_majorticks(
self, nb_majorticks, expected_nb_minorticks):
# This test is related to issue #8804
fig, ax = plt.subplots()
xlims = (0, 5) # easier to test the different code paths
ax.set_xlim(*xlims)
ax.set_xticks(np.linspace(xlims[0], xlims[1], nb_majorticks))
ax.minorticks_on()
ax.xaxis.set_minor_locator(mticker.AutoMinorLocator())
assert len(ax.xaxis.get_minorticklocs()) == expected_nb_minorticks
示例7: test_autofmt_xdate
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def test_autofmt_xdate(which):
date = ['3 Jan 2013', '4 Jan 2013', '5 Jan 2013', '6 Jan 2013',
'7 Jan 2013', '8 Jan 2013', '9 Jan 2013', '10 Jan 2013',
'11 Jan 2013', '12 Jan 2013', '13 Jan 2013', '14 Jan 2013']
time = ['16:44:00', '16:45:00', '16:46:00', '16:47:00', '16:48:00',
'16:49:00', '16:51:00', '16:52:00', '16:53:00', '16:55:00',
'16:56:00', '16:57:00']
angle = 60
minors = [1, 2, 3, 4, 5, 6, 7]
x = mdates.datestr2num(date)
y = mdates.datestr2num(time)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.yaxis_date()
ax.xaxis_date()
ax.xaxis.set_minor_locator(AutoMinorLocator(2))
ax.xaxis.set_minor_formatter(FixedFormatter(minors))
fig.autofmt_xdate(0.2, angle, 'right', which)
if which in ('both', 'major', None):
for label in fig.axes[0].get_xticklabels(False, 'major'):
assert int(label.get_rotation()) == angle
if which in ('both', 'minor'):
for label in fig.axes[0].get_xticklabels(True, 'minor'):
assert int(label.get_rotation()) == angle
示例8: visualize
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def visualize(result, name):
# (N_samples=5, timesteps=200, types)
result = np.array(result)
assert result.shape[2] == 2
# ax = sns.tsplot(data=result, condition=['OptNet', 'Adam'], linestyle='--')
def trans(series):
# (N_samples, timesteps)
x = np.tile(np.arange(series.shape[1]) + 1,
(series.shape[0], 1)).flatten()
y = series.flatten()
return {'x': x, 'y': y}
ax = sns.lineplot(label='OptNet', **trans(result[:, :, 0]))
ax = sns.lineplot(label='Adam', ax=ax, **trans(result[:, :, 1]))
ax.lines[-1].set_linestyle('-')
ax.legend()
plt.yscale('log'), plt.xlabel('steps')
plt.ylabel('loss'), plt.title('MNIST')
plt.ylim(0.09, 3.0)
plt.xlim(1, result.shape[1])
plt.grid(which='both', alpha=0.6, color='black', linewidth=0.1,
linestyle='-')
ax.tick_params(which='both', direction='in')
ax.tick_params(which='major', length=8)
ax.tick_params(which='minor', length=3)
ax.xaxis.set_minor_locator(AutoMinorLocator(5))
plt.show()
plt.savefig(name)
plt.close()
示例9: plotSeries
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def plotSeries(key, ymin=None, ymax=None):
"""
Plot the chosen dataset key for each scanned data file.
@param key: data set key to use
@type key: L{str}
@param ymin: minimum value for y-axis or L{None} for default
@type ymin: L{int} or L{float}
@param ymax: maximum value for y-axis or L{None} for default
@type ymax: L{int} or L{float}
"""
titles = []
for title, data in sorted(dataset.items(), key=lambda x: x[0]):
titles.append(title)
x, y = zip(*[(k / 3600.0, v[key]) for k, v in sorted(data.items(), key=lambda x: x[0]) if key in v])
plt.plot(x, y)
plt.xlabel("Hours")
plt.ylabel(key)
plt.xlim(0, 24)
if ymin is not None:
plt.ylim(ymin=ymin)
if ymax is not None:
plt.ylim(ymax=ymax)
plt.xticks(
(1, 4, 7, 10, 13, 16, 19, 22,),
(18, 21, 0, 3, 6, 9, 12, 15,),
)
plt.minorticks_on()
plt.gca().xaxis.set_minor_locator(AutoMinorLocator(n=3))
plt.grid(True, "major", "x", alpha=0.5, linewidth=0.5)
plt.grid(True, "minor", "x", alpha=0.5, linewidth=0.5)
plt.legend(titles, 'upper left', shadow=True, fancybox=True)
plt.show()
示例10: set_format_scatterplot
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def set_format_scatterplot(axScatter, **kwargs):
min_x, max_x = None, None
min_y, max_y = None, None
if kwargs['plot'] == 'blobplot':
min_x, max_x = 0, 1
major_xticks = MultipleLocator(0.2)
minor_xticks = AutoMinorLocator(20)
min_y, max_y = kwargs['min_cov']*0.1, kwargs['max_cov']+100
axScatter.set_yscale('log')
axScatter.set_xscale('linear')
axScatter.xaxis.set_major_locator(major_xticks)
axScatter.xaxis.set_minor_locator(minor_xticks)
elif kwargs['plot'] == 'covplot':
min_x, max_x = kwargs['min_cov']*0.1, kwargs['max_cov']+100
min_y, max_y = kwargs['min_cov']*0.1, kwargs['max_cov']+100
axScatter.set_yscale('log')
axScatter.set_xscale('log')
else:
BtLog.error('34' % kwargs['plot'])
axScatter.set_xlim( (min_x, max_x) )
axScatter.set_ylim( (min_y, max_y) ) # This sets the max-Coverage so that all libraries + sum are at the same scale
axScatter.grid(True, which="major", lw=2., color=BGGREY, linestyle='-')
axScatter.set_axisbelow(True)
axScatter.xaxis.labelpad = 20
axScatter.yaxis.labelpad = 20
axScatter.yaxis.get_major_ticks()[0].label1.set_visible(False)
axScatter.tick_params(axis='both', which='both', direction='out')
return axScatter
示例11: _maketicks
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def _maketicks(self, ax, units='THz'):
"""Utility method to add tick marks to a band structure."""
# set y-ticks
ax.yaxis.set_major_locator(MaxNLocator(6))
ax.yaxis.set_minor_locator(AutoMinorLocator(2))
ax.xaxis.set_minor_locator(AutoMinorLocator(2))
# set x-ticks; only plot the unique tick labels
ticks = self.get_ticks()
unique_d = []
unique_l = []
if ticks['distance']:
temp_ticks = list(zip(ticks['distance'], ticks['label']))
unique_d.append(temp_ticks[0][0])
unique_l.append(temp_ticks[0][1])
for i in range(1, len(temp_ticks)):
if unique_l[-1] != temp_ticks[i][1]:
unique_d.append(temp_ticks[i][0])
unique_l.append(temp_ticks[i][1])
logging.info('\nLabel positions:')
for dist, label in list(zip(unique_d, unique_l)):
logging.info('\t{:.4f}: {}'.format(dist, label))
ax.set_xticks(unique_d)
ax.set_xticklabels(unique_l)
ax.xaxis.grid(True, ls='-')
trans_xdata_yaxes = blended_transform_factory(ax.transData,
ax.transAxes)
ax.vlines(unique_d, 0, 1,
transform=trans_xdata_yaxes,
colors=rcParams['grid.color'],
linewidth=rcParams['grid.linewidth'])
# Use a text hyphen instead of a minus sign because some nice fonts
# like Whitney don't come with a real minus
labels = {'thz': 'THz', 'cm-1': r'cm$^{\mathrm{-}\mathregular{1}}$',
'ev': 'eV', 'mev': 'meV'}
ax.set_ylabel('Frequency ({0})'.format(labels[units.lower()]))
示例12: minorticks_on
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def minorticks_on(self):
'Add autoscaling minor ticks to the axes.'
for ax in (self.xaxis, self.yaxis):
scale = ax.get_scale()
if scale == 'log':
s = ax._scale
ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
elif scale == 'symlog':
s = ax._scale
ax.set_minor_locator(
mticker.SymmetricalLogLocator(s._transform, s.subs))
else:
ax.set_minor_locator(mticker.AutoMinorLocator())
示例13: mirror
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def mirror(spec_top: MsmsSpectrum, spec_bottom: MsmsSpectrum,
spectrum_kws: Optional[Dict] = None, ax: Optional[plt.Axes] = None)\
-> plt.Axes:
"""
Mirror plot two MS/MS spectra.
Parameters
----------
spec_top : MsmsSpectrum
The spectrum to be plotted on the top.
spec_bottom : MsmsSpectrum
The spectrum to be plotted on the bottom.
spectrum_kws : Optional[Dict], optional
Keyword arguments for `plot.spectrum`.
ax : Optional[plt.Axes], optional
Axes instance on which to plot the spectrum. If None the current Axes
instance is used.
Returns
-------
plt.Axes
The matplotlib Axes instance on which the spectra are plotted.
"""
if ax is None:
ax = plt.gca()
if spectrum_kws is None:
spectrum_kws = {}
# Top spectrum.
spectrum(spec_top, mirror_intensity=False, ax=ax, **spectrum_kws)
y_max = ax.get_ylim()[1]
# Mirrored bottom spectrum.
spectrum(spec_bottom, mirror_intensity=True, ax=ax, **spectrum_kws)
y_min = ax.get_ylim()[0]
ax.set_ylim(y_min, y_max)
ax.axhline(0, color='#9E9E9E', zorder=10)
# Update axes so that both spectra fit.
min_mz = max([0, math.floor(spec_top.mz[0] / 100 - 1) * 100,
math.floor(spec_bottom.mz[0] / 100 - 1) * 100])
max_mz = max([math.ceil(spec_top.mz[-1] / 100 + 1) * 100,
math.ceil(spec_bottom.mz[-1] / 100 + 1) * 100])
ax.set_xlim(min_mz, max_mz)
ax.yaxis.set_major_locator(mticker.AutoLocator())
ax.yaxis.set_minor_locator(mticker.AutoMinorLocator())
ax.yaxis.set_major_formatter(mticker.FuncFormatter(
lambda x, pos: f'{abs(x):.0%}'))
return ax
示例14: _maketicks
# 需要导入模块: from matplotlib import ticker [as 别名]
# 或者: from matplotlib.ticker import AutoMinorLocator [as 别名]
def _maketicks(self, ax, ylabel='Energy (eV)'):
"""Utility method to add tick marks to a band structure."""
# set y-ticks
ax.yaxis.set_major_locator(MaxNLocator(6))
ax.yaxis.set_minor_locator(AutoMinorLocator(2))
# set x-ticks; only plot the unique tick labels
ticks = self.get_ticks()
unique_d = []
unique_l = []
if ticks['distance']:
temp_ticks = list(zip(ticks['distance'], ticks['label']))
unique_d.append(temp_ticks[0][0])
unique_l.append(temp_ticks[0][1])
for i in range(1, len(temp_ticks)):
# Hide labels marked with @
if '@' in temp_ticks[i][1]:
# If a branch connection, check all parts of label
if r'$\mid$' in temp_ticks[i][1]:
label_components = temp_ticks[i][1].split(r'$\mid$')
good_labels = [l for l in label_components
if l[0] != '@']
if len(good_labels) == 0:
continue
else:
temp_ticks[i] = (temp_ticks[i][0],
r'$\mid$'.join(good_labels))
# If a single label, check first character
elif temp_ticks[i][1][0] == '@':
continue
# Append label to sequence if it is not same as predecessor
if unique_l[-1] != temp_ticks[i][1]:
unique_d.append(temp_ticks[i][0])
unique_l.append(temp_ticks[i][1])
logging.info('Label positions:')
for dist, label in list(zip(unique_d, unique_l)):
logging.info('\t{:.4f}: {}'.format(dist, label))
ax.set_xticks(unique_d)
ax.set_xticklabels(unique_l)
ax.xaxis.grid(True, ls='-')
ax.set_ylabel(ylabel)
trans_xdata_yaxes = blended_transform_factory(ax.transData,
ax.transAxes)
ax.vlines(unique_d, 0, 1,
transform=trans_xdata_yaxes,
colors=rcParams['grid.color'],
linewidth=rcParams['grid.linewidth'],
zorder=3)