本文整理汇总了Python中matplotlib.rcParams.update方法的典型用法代码示例。如果您正苦于以下问题:Python rcParams.update方法的具体用法?Python rcParams.update怎么用?Python rcParams.update使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.rcParams
的用法示例。
在下文中一共展示了rcParams.update方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_pub_style
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def set_pub_style():
"""formatting helper function that can be used to save publishable figures"""
set_figure_params('dynamo', background='white')
matplotlib.use('cairo')
matplotlib.rcParams.update({'font.size': 4})
params = {'legend.fontsize': 4,
'legend.handlelength': 0.5}
matplotlib.rcParams.update(params)
params = {'axes.labelsize': 6,
'axes.titlesize':6,
'xtick.labelsize':6,
'ytick.labelsize':6,
'axes.titlepad': 1,
'axes.labelpad': 1
}
matplotlib.rcParams.update(params)
示例2: visualize_2D_trip
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
colors = ['red'] # Depot is first city
for i in range(len(tw_open)-1):
colors.append('blue')
plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with TW
tw_open = np.rint(tw_open)
tw_close = np.rint(tw_close)
time_window = np.concatenate((tw_open,tw_close),axis=1)
for tw, (x, y) in zip(time_window,(zip(X,Y))):
plt.annotate(tw,xy=(x, y))
plt.xlim(0,60)
plt.ylim(0,60)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例3: visualize_sampling
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def visualize_sampling(self,permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
# Heatmap of attention (x=cities; y=steps)
示例4: visualize_2D_trip
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def visualize_2D_trip(self, trip):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
plt.scatter(trip[:,0], trip[:,1], s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with order
labels = range(len(trip))
for i, (x, y) in zip(labels,(zip(X,Y))):
plt.annotate(i,xy=(x, y))
plt.xlim(0,100)
plt.ylim(0,100)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例5: visualize_sampling
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def visualize_sampling(self, permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
示例6: plot_class_ROC
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def plot_class_ROC(fpr, tpr, roc_auc, class_idx, labels):
from matplotlib import rcParams
# Make room for xlabel which is otherwise cut off
rcParams.update({'figure.autolayout': True})
plt.figure()
lw = 2
plt.plot(fpr[class_idx], tpr[class_idx], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[class_idx])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic of class {}'.format(labels[class_idx]))
plt.legend(loc="lower right")
plt.tight_layout()
示例7: add_theme
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def add_theme(self, other, inplace=False):
"""Add themes together.
Subclasses should not override this method.
This will be called when adding two instances of class 'theme'
together.
A complete theme will annihilate any previous themes. Partial themes
can be added together and can be added to a complete theme.
"""
if other.complete:
return other
theme_copy = self if inplace else deepcopy(self)
theme_copy.themeables.update(deepcopy(other.themeables))
return theme_copy
示例8: visualize_attention
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def visualize_attention(self,attention):
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(attention, interpolation='nearest', cmap='hot')
plt.colorbar()
plt.title('Attention distribution')
plt.ylabel('Step t')
plt.xlabel('Attention_t')
plt.show()
示例9: plot_metric_graph
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def plot_metric_graph(x_list, y_list, x_label="Datapoints", y_label="Accuracy",
title='Metric list', save=False):
from matplotlib import rcParams
# Make room for xlabel which is otherwise cut off
rcParams.update({'figure.autolayout': True})
plt.figure()
plt.plot(x_list, y_list, label="90/10 split")
# plt.plot(x_list2, y_list2, label="Seperate testset")
# Calculate min and max of y scale
ymin = np.min(y_list)
ymin = np.floor(ymin * 10) / 10
ymax = np.max(y_list)
ymax = np.ceil(ymax * 10) / 10
plt.ylim(ymin, ymax)
plt.title("{0}".format(title))
plt.tight_layout()
plt.ylabel(y_label)
plt.xlabel(x_label)
# plt.legend()
if save:
i = 0
filename = "{}".format(title)
while os.path.exists('{}{:d}.png'.format(filename, i)):
i += 1
plt.savefig('{}{:d}.png'.format(filename, i), dpi=300)
plt.draw()
# plt.gcf().clear()
示例10: plot_multi_ROC
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def plot_multi_ROC(fpr, tpr, roc_auc, num_classes, labels, micro=True, macro=True):
from matplotlib import rcParams
# Make room for xlabel which is otherwise cut off
rcParams.update({'figure.autolayout': True})
# Plot all ROC curves
plt.figure()
lw = 2
if micro:
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
if macro:
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)
color_map = {0: '#487fff', 1: '#2ee3ff', 2: '#4eff4e', 3: '#ffca43', 4: '#ff365e', 5: '#d342ff', 6: '#626663'}
# colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i in range(num_classes):
plt.plot(fpr[i], tpr[i], color=color_map[i], lw=lw,
label='ROC curve of {0} (area = {1:0.2f})'
''.format(labels[i], roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic of all classes')
plt.legend(loc="lower right")
plt.tight_layout()
示例11: set_rcParams_defaults
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def set_rcParams_defaults():
"""Reset `matplotlib.rcParams` to defaults."""
rcParams.update(matplotlib.rcParamsDefault)
示例12: set_rcParams_defaults
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def set_rcParams_defaults():
"""Reset `matplotlib.rcParams` to defaults."""
from matplotlib import rcParamsDefault
rcParams.update(rcParamsDefault)
# ------------------------------------------------------------------------------
# Private global variables & functions
# ------------------------------------------------------------------------------
示例13: rcParams
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def rcParams(self):
"""
Return rcParams dict for this theme.
Notes
-----
Subclasses should not need to override this method method as long as
self._rcParams is constructed properly.
rcParams are used during plotting. Sometimes the same theme can be
achieved by setting rcParams before plotting or a apply
after plotting. The choice of how to implement it is is a matter of
convenience in that case.
There are certain things can only be themed after plotting. There
may not be an rcParam to control the theme or the act of plotting
may cause an entity to come into existence before it can be themed.
"""
try:
rcParams = deepcopy(self._rcParams)
except NotImplementedError:
# deepcopy raises an error for objects that are drived from or
# composed of matplotlib.transform.TransformNode.
# Not desirable, but probably requires upstream fix.
# In particular, XKCD uses matplotlib.patheffects.withStrok
rcParams = copy(self._rcParams)
for th in self.themeables.values():
rcParams.update(th.rcParams)
return rcParams
示例14: dyn_theme
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def dyn_theme(background="white"):
# https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/mpl-data/stylelib/dark_background.mplstyle
if background == "black":
rcParams.update(
{
"lines.color": "w",
"patch.edgecolor": "w",
"text.color": "w",
"axes.facecolor": background,
"axes.edgecolor": "white",
"axes.labelcolor": "w",
"xtick.color": "w",
"ytick.color": "w",
"figure.facecolor": background,
"figure.edgecolor": background,
"savefig.facecolor": background,
"savefig.edgecolor": background,
"grid.color": "w",
"axes.grid": False,
}
)
else:
rcParams.update(
{
"lines.color": "k",
"patch.edgecolor": "k",
"text.color": "k",
"axes.facecolor": background,
"axes.edgecolor": "black",
"axes.labelcolor": "k",
"xtick.color": "k",
"ytick.color": "k",
"figure.facecolor": background,
"figure.edgecolor": background,
"savefig.facecolor": background,
"savefig.edgecolor": background,
"grid.color": "k",
"axes.grid": False,
}
)
示例15: reset_rcParams
# 需要导入模块: from matplotlib import rcParams [as 别名]
# 或者: from matplotlib.rcParams import update [as 别名]
def reset_rcParams():
"""Reset `matplotlib.rcParams` to defaults."""
from matplotlib import rcParamsDefault
rcParams.update(rcParamsDefault)