本文整理汇总了Python中matplotlib.pyplot.yscale方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.yscale方法的具体用法?Python pyplot.yscale怎么用?Python pyplot.yscale使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.yscale方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: hist_width
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def hist_width(d, i=0, bins=(0, 10, 0.025), pdf=True, weights=None,
yscale='log', color=None, plot_style=None, vline=None):
"""Plot histogram of burst durations.
Parameters:
d (Data): Data object
i (int): channel index
bins (array or None): array of bin edges. If len(bins) == 3
then is interpreted as (start, stop, step) values.
pdf (bool): if True, normalize the histogram to obtain a PDF.
color (string or tuple or None): matplotlib color used for the plot.
yscale (string): 'log' or 'linear', sets the plot y scale.
plot_style (dict): dict of matplotlib line style passed to `plot`.
vline (float): If not None, plot vertical line at the specified x
position.
"""
weights = weights[i] if weights is not None else None
burst_widths = d.mburst[i].width * d.clk_p * 1e3
_hist_burst_taildist(burst_widths, bins, pdf, weights=weights, vline=vline,
yscale=yscale, color=color, plot_style=plot_style)
plt.xlabel('Burst width (ms)')
plt.xlim(xmin=0)
示例2: plot_train_loss
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def plot_train_loss(df=[], arr_list=[''], figname='training_loss.png'):
fig, ax = plt.subplots(figsize=(16,10))
for arr in arr_list:
label = df[arr][0]
vals = df[arr][1]
epochs = range(0, len(vals))
ax.plot(epochs, vals, label=r'%s'%(label))
ax.set_xlabel('Epoch', fontsize=18)
ax.set_ylabel('Loss', fontsize=18)
ax.set_title('Training Loss', fontsize=24)
ax.grid()
#plt.yscale('log')
plt.legend(loc='upper right', numpoints=1, fontsize=16)
print(figname)
plt.tight_layout()
fig.savefig(figname)
示例3: example1
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def example1():
"""
Compute the GRADEV of a white phase noise. Compares two different
scenarios. 1) The original data and 2) ADEV estimate with gap robust ADEV.
"""
N = 1000
f = 1
y = np.random.randn(1,N)[0,:]
x = [xx for xx in np.linspace(1,len(y),len(y))]
x_ax, y_ax, (err_l, err_h), ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h],label='GRADEV, no gaps')
y[int(np.floor(0.4*N)):int(np.floor(0.6*N))] = np.NaN # Simulate missing data
x_ax, y_ax, (err_l, err_h) , ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h], label='GRADEV, with gaps')
plt.xscale('log')
plt.yscale('log')
plt.grid()
plt.legend()
plt.xlabel('Tau / s')
plt.ylabel('Overlapping Allan deviation')
plt.show()
示例4: _hist_burst_taildist
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def _hist_burst_taildist(data, bins, pdf, weights=None, yscale='log',
color=None, label=None, plot_style=None, vline=None):
hist = HistData(*np.histogram(data[~np.isnan(data)],
bins=_bins_array(bins), weights=weights))
ydata = hist.pdf if pdf else hist.counts
default_plot_style = dict(marker='o')
if plot_style is None:
plot_style = {}
if color is not None:
plot_style['color'] = color
if label is not None:
plot_style['label'] = label
default_plot_style.update(_normalize_kwargs(plot_style, kind='line2d'))
plt.plot(hist.bincenters, ydata, **default_plot_style)
if vline is not None:
plt.axvline(vline, ls='--')
plt.yscale(yscale)
if pdf:
plt.ylabel('PDF')
else:
plt.ylabel('# Bursts')
示例5: hist_mrates
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def hist_mrates(d, i=0, m=10, bins=(0, 4000, 100), yscale='log', pdf=False,
dense=True, plot_style=None):
"""Histogram of m-photons rates. See also :func:`hist_mdelays`.
"""
ph = d.get_ph_times(ich=i)
if dense:
ph_mrates = 1.*m/((ph[m-1:]-ph[:ph.size-m+1])*d.clk_p*1e3)
else:
ph_mrates = 1.*m/(np.diff(ph[::m])*d.clk_p*1e3)
hist = HistData(*np.histogram(ph_mrates, bins=_bins_array(bins)))
ydata = hist.pdf if pdf else hist.counts
plot_style_ = dict(marker='o')
plot_style_.update(_normalize_kwargs(plot_style, kind='line2d'))
plot(hist.bincenters, ydata, **plot_style_)
gca().set_yscale(yscale)
xlabel("Rates (kcps)")
## Bursts stats
示例6: test_markevery_log_scales
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def test_markevery_log_scales():
cases = [None,
8,
(30, 8),
[16, 24, 30], [0,-1],
slice(100, 200, 3),
0.1, 0.3, 1.5,
(0.0, 0.1), (0.45, 0.1)]
cols = 3
gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols)
delta = 0.11
x = np.linspace(0, 10 - 2 * delta, 200) + delta
y = np.sin(x) + 1.0 + delta
for i, case in enumerate(cases):
row = (i // cols)
col = i % cols
plt.subplot(gs[row, col])
plt.title('markevery=%s' % str(case))
plt.xscale('log')
plt.yscale('log')
plt.plot(x, y, 'o', ls='-', ms=4, markevery=case)
示例7: diagnostic_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def diagnostic_plot(x, values_and_labels=(), plotmodulus=False, ylog=True, title="diagnostic plot", xlabel="x", ylabel="y"): # {{{
#try:
plt.figure(figsize=(7,6))
plotmin = None
for value, label in values_and_labels:
plt.plot(x, np.abs(value) if plotmodulus else value, label=label)
if len(value)>0:
if plotmin==None or plotmin > np.min(value):
plotmin = max(np.min(np.abs(value)), np.max(np.abs(value))/1e10)
plt.legend(prop={'size':10}, loc='lower left')
plt.xlabel(xlabel); plt.ylabel(ylabel); plt.title(title)
if ylog and plotmin is not None:
plt.yscale("log")
plt.ylim(bottom=plotmin) ## ensure reasonable extent of values of 10 orders of magnitude
plt.savefig("%s.png" % title, bbox_inches='tight')
#except:
#meep.master_printf("Diagnostic plot %s failed with %s, computation continues" % (title, sys.exc_info()[0]))
# }}}
示例8: draw
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def draw(x, y1, y2, y3, y4, y5, log, name, prefix, suffix, summariesdir):
plt.figure(1, dpi=300)
plt.plot(x, y2, label='Uninfected', color=colors['mblue'])
plt.plot(x, y1, label='Infected', color=colors['lblue'])
plt.plot(x, y3, label='Phage-producing', color=colors['blue'])
plt.plot(x, y4, label='All E. coli', color=colors['fblue'])
plt.plot(x, y5, label='Phage', color=colors['red'])
plt.legend()
logstr = ''
if log:
plt.yscale('log')
logstr = '_log'
plt.ylabel('c in Lagoon [cfu]/[pfu]')
plt.title('Calculation of Concentrations during PREDCEL')
plt.xlabel('Time [min]')
plt.savefig(os.path.join(summariesdir, '{}{}_{}.png'.format(prefix, name, logstr, suffix)))
plt.gcf().clear()
示例9: test_markevery_log_scales
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def test_markevery_log_scales():
cases = [None,
8,
(30, 8),
[16, 24, 30], [0, -1],
slice(100, 200, 3),
0.1, 0.3, 1.5,
(0.0, 0.1), (0.45, 0.1)]
cols = 3
gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols)
delta = 0.11
x = np.linspace(0, 10 - 2 * delta, 200) + delta
y = np.sin(x) + 1.0 + delta
for i, case in enumerate(cases):
row = (i // cols)
col = i % cols
plt.subplot(gs[row, col])
plt.title('markevery=%s' % str(case))
plt.xscale('log')
plt.yscale('log')
plt.plot(x, y, 'o', ls='-', ms=4, markevery=case)
示例10: plot_cumulative_recall_differences
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def plot_cumulative_recall_differences(cumulative_recalls, path):
"""Plot differences in cumulative recall between groups up to time T."""
plt.figure(figsize=(8, 3))
style = {'dynamic': '-', 'static': '--'}
for setting, recalls in cumulative_recalls.items():
abs_array = np.mean(np.abs(recalls[0::2, :] - recalls[1::2, :]), axis=0)
plt.plot(abs_array, style[setting], label=setting)
plt.title(
'Recall gap for EO agent in dynamic vs static environments', fontsize=16)
plt.yscale('log')
plt.xscale('log')
plt.ylabel('TPR gap', fontsize=16)
plt.xlabel('# steps', fontsize=16)
plt.grid(True)
plt.legend()
plt.tight_layout()
_write(path)
示例11: plot_forwardings
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def plot_forwardings(forwarding_events):
"""
Plots a time series of the forwarding amounts.
:param forwarding_events:
"""
times = []
amounts = []
for f in forwarding_events:
times.append(datetime.datetime.fromtimestamp(f['timestamp']))
amounts.append(f['amt_in'])
plt.xticks(rotation=45)
plt.scatter(times, amounts, s=2)
plt.yscale('log')
plt.ylabel('Forwarding amount [sat]')
plt.show()
示例12: plot_fees
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def plot_fees(forwarding_events):
"""
Plots forwarding fees and effective fee rate in color code.
:param forwarding_events:
"""
times = []
amounts = []
color = []
for f in forwarding_events:
times.append(datetime.datetime.fromtimestamp(f['timestamp']))
amounts.append(f['fee_msat'])
color.append(f['effective_fee'])
plt.xticks(rotation=45)
plt.scatter(times, amounts, c=color, norm=colors.LogNorm(vmin=1E-6, vmax=1E-3), s=2)
plt.yscale('log')
plt.ylabel('Fees [msat]')
plt.ylim((0.5, 1E+6))
plt.colorbar(label='effective feerate (base + rate)')
plt.show()
示例13: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def plot(self, min_val=-10, max_val=10, step_size=0.1, figsize=(10, 5), xlabel=None, ylabel='Probability', xticks=None, yticks=None, log_xscale=False, log_yscale=False, file_name=None, show=True, fig=None, *args, **kwargs):
if fig is None:
if not show:
mpl.rcParams['axes.unicode_minus'] = False
plt.switch_backend('agg')
fig = plt.figure(figsize=figsize)
fig.tight_layout()
xvals = np.arange(min_val, max_val, step_size)
plt.plot(xvals, [torch.exp(self.log_prob(x)) for x in xvals], *args, **kwargs)
if log_xscale:
plt.xscale('log')
if log_yscale:
plt.yscale('log', nonposy='clip')
if xticks is not None:
plt.xticks(xticks)
if yticks is not None:
plt.xticks(yticks)
# if xlabel is None:
# xlabel = self.name
plt.xlabel(xlabel)
plt.ylabel(ylabel)
if file_name is not None:
plt.savefig(file_name)
if show:
plt.show()
示例14: test_ioworker_performance
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def test_ioworker_performance(nvme0n1):
import matplotlib.pyplot as plt
output_io_per_second = []
percentile_latency = dict.fromkeys([90, 99, 99.9, 99.99, 99.999])
nvme0n1.ioworker(io_size=8,
lba_random=True,
read_percentage=100,
output_io_per_second=output_io_per_second,
output_percentile_latency=percentile_latency,
time=10).start().close()
logging.info(output_io_per_second)
logging.info(percentile_latency)
X = []
Y = []
for _, k in enumerate(percentile_latency):
X.append(k)
Y.append(percentile_latency[k])
plt.plot(X, Y)
plt.xscale('log')
plt.yscale('log')
#plt.show()
示例15: test_replay_pynvme_trace
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import yscale [as 别名]
def test_replay_pynvme_trace(nvme0, nvme0n1, accelerator=1.0):
filename = sg.PopupGetFile('select the trace file to replay', 'pynvme')
if filename:
logging.info(filename)
# format before replay
nvme0n1.format(512)
responce_time = [0]*1000000
replay_logfile(filename, nvme0n1, nvme0.mdts, accelerator, responce_time)
import matplotlib.pyplot as plt
plt.plot(responce_time)
plt.xlabel('useconds')
plt.ylabel('# IO')
plt.xlim(1, len(responce_time))
plt.ylim(bottom=1)
plt.xscale('log')
plt.yscale('log')
plt.title(filename)
plt.tight_layout()
plt.show()