本文整理汇总了Python中matplotlib.pyplot.title方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.title方法的具体用法?Python pyplot.title怎么用?Python pyplot.title使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.title方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def demo_plot():
audio = './data/esc10/audio/Dog/1-30226-A.ogg'
y, sr = librosa.load(audio, sr=44100)
y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6) # n_steps控制音调变化尺度
y_ts = librosa.effects.time_stretch(y, rate=1.2) # rate控制时间维度的变换尺度
plt.subplot(311)
plt.plot(y)
plt.title('Original waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.subplot(312)
plt.plot(y_ts)
plt.title('Time Stretch transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
plt.subplot(313)
plt.plot(y_ps)
plt.title('Pitch Shift transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.tight_layout()
plt.show()
示例2: plot_confusion_matrix
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例3: __init__
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def __init__(self, title, varieties, data_points, attrs,
anim=False, data_func=None, is_headless=False):
global anim_func
plt.close()
self.legend = ["Type"]
self.title = title
# self.anim = anim
# self.data_func = data_func
for i in varieties:
data_points = len(varieties[i]["data"])
break
self.headless = is_headless
self.draw_graph(data_points, varieties, attrs)
# if anim and not self.headless:
# anim_func = animation.FuncAnimation(self.fig,
# self.update_plot,
# frames=1000,
# interval=500,
# blit=False)
示例4: __init__
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def __init__(self, title, varieties, data_points,
anim=False, data_func=None, is_headless=False, legend_pos=4):
global anim_func
self.title = title
self.anim = anim
self.data_func = data_func
for i in varieties:
data_points = len(varieties[i]["data"])
break
self.draw_graph(data_points, varieties)
self.headless = is_headless
if anim and not self.headless:
anim_func = animation.FuncAnimation(self.fig,
self.update_plot,
frames=1000,
interval=500,
blit=False)
示例5: plot_roc_curve
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例6: update
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def update(self, xPhys, u, title=None):
"""Plot to screen"""
self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T)
stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu)
# self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu)
self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress)))
stress_rgba = self.myColorMap.to_rgba(stress)
stress_rgba[:, :, 3] = xPhys.reshape(-1, 1)
self.stress_im.set_array(np.swapaxes(
stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1))
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if title is not None:
plt.title(title)
else:
plt.xlabel("Max stress = {:.2f}".format(max(stress)[0]))
plt.pause(0.01)
示例7: plot_alignment
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def plot_alignment(alignment, gs, dir=hp.logdir):
"""Plots the alignment.
Args:
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
gs: (int) global step.
dir: Output path.
"""
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('{} Steps'.format(gs))
plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
plt.close(fig)
示例8: compute_roc
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def compute_roc(y_true, y_pred, plot=False):
"""
TODO
:param y_true: ground truth
:param y_pred: predictions
:param plot:
:return:
"""
fpr, tpr, _ = roc_curve(y_true, y_pred)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例9: compute_roc_rfeinman
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
"""
TODO
:param probs_neg:
:param probs_pos:
:param plot:
:return:
"""
probs = np.concatenate((probs_neg, probs_pos))
labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
fpr, tpr, _ = roc_curve(labels, probs)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例10: data_stat
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例11: visualize_sampling
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def visualize_sampling(self,permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
# Heatmap of attention (x=cities; y=steps)
示例12: visualize_sampling
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def visualize_sampling(self, permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
示例13: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def plot(PDF, figName, imgpath, show=False, save=True):
# plot
output = PDF.get_constraint_value()
plt.plot(PDF.experimentalDistances,PDF.experimentalPDF, 'ro', label="experimental", markersize=7.5, markevery=1 )
plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth=3.0, markevery=25, label="total" )
styleIndex = 0
for key in output:
val = output[key]
if key in ("pdf_total", "pdf"):
continue
elif "inter" in key:
plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery=5, label=key.split('rdf_inter_')[1] )
styleIndex+=1
plt.legend(frameon=False, ncol=1)
# set labels
plt.title("$\\chi^{2}=%.6f$"%PDF.squaredDeviations, size=20)
plt.xlabel("$r (\AA)$", size=20)
plt.ylabel("$g(r)$", size=20)
# show plot
if save: plt.savefig(figName)
if show: plt.show()
plt.close()
示例14: visualize_anomaly
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def visualize_anomaly(y_true, reconstruction_error, threshold):
error_df = pd.DataFrame({'reconstruction_error': reconstruction_error,
'true_class': y_true})
print(error_df.describe())
groups = error_df.groupby('true_class')
fig, ax = plt.subplots()
for name, group in groups:
ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='',
label="Fraud" if name == 1 else "Normal")
ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
ax.legend()
plt.title("Reconstruction error for different classes")
plt.ylabel("Reconstruction error")
plt.xlabel("Data point index")
plt.show()
示例15: plot_time_series
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import title [as 别名]
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0,
color='r', title=None):
if bidx is None:
vals_txn = np.mean(vals_bxtxn, axis=0)
else:
vals_txn = vals_bxtxn[bidx,:,:]
T, N = vals_txn.shape
if n_to_plot > N:
n_to_plot = N
plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)),
color=color, lw=1.0)
plt.axis('tight')
if title:
plt.title(title)