本文整理汇总了Python中matplotlib.pyplot.tight_layout方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.tight_layout方法的具体用法?Python pyplot.tight_layout怎么用?Python pyplot.tight_layout使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.tight_layout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def demo_plot():
audio = './data/esc10/audio/Dog/1-30226-A.ogg'
y, sr = librosa.load(audio, sr=44100)
y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6) # n_steps控制音调变化尺度
y_ts = librosa.effects.time_stretch(y, rate=1.2) # rate控制时间维度的变换尺度
plt.subplot(311)
plt.plot(y)
plt.title('Original waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.subplot(312)
plt.plot(y_ts)
plt.title('Time Stretch transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
plt.subplot(313)
plt.plot(y_ps)
plt.title('Pitch Shift transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.tight_layout()
plt.show()
示例2: data_stat
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例3: figures
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def figures(ext, show):
for name, df in TablesRecorder.generate_dataframes('thames_output.h5'):
df.columns = ['Very low', 'Low', 'Central', 'High', 'Very high']
fig, (ax1, ax2) = plt.subplots(figsize=(12, 4), ncols=2, sharey='row',
gridspec_kw={'width_ratios': [3, 1]})
df['2100':'2125'].plot(ax=ax1)
df.quantile(np.linspace(0, 1)).plot(ax=ax2)
if name.startswith('reservoir'):
ax1.set_ylabel('Volume [$Mm^3$]')
else:
ax1.set_ylabel('Flow [$Mm^3/day$]')
for ax in (ax1, ax2):
ax.set_title(name)
ax.grid(True)
plt.tight_layout()
if ext is not None:
fig.savefig(f'{name}.{ext}', dpi=300)
if show:
plt.show()
示例4: plot_attention
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plot_attention(sentences, attentions, labels, **kwargs):
fig, ax = plt.subplots(**kwargs)
im = ax.imshow(attentions, interpolation='nearest',
vmin=attentions.min(), vmax=attentions.max())
plt.colorbar(im, shrink=0.5, ticks=[0, 1])
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
ax.set_yticks(range(len(labels)))
ax.set_yticklabels(labels, fontproperties=getChineseFont())
# Loop over data dimensions and create text annotations.
for i in range(attentions.shape[0]):
for j in range(attentions.shape[1]):
text = ax.text(j, i, sentences[i][j],
ha="center", va="center", color="b", size=10,
fontproperties=getChineseFont())
ax.set_title("Attention Visual")
fig.tight_layout()
plt.show()
示例5: _show_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def _show_plot(x_values, y_values, x_labels=None, y_labels=None):
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError('The plot function requires matplotlib to be installed.'
'See http://matplotlib.org/')
plt.locator_params(axis='y', nbins=3)
axes = plt.axes()
axes.yaxis.grid()
plt.plot(x_values, y_values, 'ro', color='red')
plt.ylim(ymin=-1.2, ymax=1.2)
plt.tight_layout(pad=5)
if x_labels:
plt.xticks(x_values, x_labels, rotation='vertical')
if y_labels:
plt.yticks([-1, 0, 1], y_labels, rotation='horizontal')
# Pad margins so that markers are not clipped by the axes
plt.margins(0.2)
plt.show()
#////////////////////////////////////////////////////////////
#{ Parsing and conversion functions
#////////////////////////////////////////////////////////////
示例6: plot_command
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plot_command(self, ns):
import matplotlib.pyplot as plt
results = pd.read_csv(ns.file)
orientation = COLSROWS[ns.orientation]
size = ns.size if ns.size else DEFAULT_SIZES[ns.orientation]
fig, axes = plt.subplots(**orientation)
fig.set_size_inches(*size)
plot(results, *axes)
fig.suptitle("")
plt.tight_layout()
if ns.out is None:
print(f"Showing plot for data stored in '{ns.file.name}'...")
fig.canvas.set_window_title(f"{self.parser.prog} - {ns.file.name}")
plt.show()
else:
print(
f"Storing plot for data in '{ns.file.name}' -> '{ns.out}'...")
plt.savefig(ns.out)
print("DONE!")
示例7: plot_command
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plot_command(self, ns):
import matplotlib.pyplot as plt
results = pd.read_csv(ns.file)
size = ns.size if ns.size else DEFAULT_SIZE
fig, ax = plt.subplots()
fig.set_size_inches(*size)
plot(results, ax)
fig.suptitle("")
plt.tight_layout()
if ns.out is None:
print(f"Showing plot for data stored in '{ns.file.name}'...")
fig.canvas.set_window_title(f"{self.parser.prog} - {ns.file.name}")
plt.show()
else:
print(
f"Storing plot for data in '{ns.file.name}' -> '{ns.out}'...")
plt.savefig(ns.out)
print("DONE!")
示例8: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Epochs
示例9: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
示例10: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例11: plotNNFilterOverlay
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
示例12: imshow
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def imshow(data, which, levels):
"""
Display order book data as an image, where order book data is either of
`df_price` or `df_volume` returned by `load_hdf5` or `load_postgres`.
"""
if which == 'prices':
idx = ['askprc.' + str(i) for i in range(levels, 0, -1)]
idx.extend(['bidprc.' + str(i) for i in range(1, levels + 1, 1)])
elif which == 'volumes':
idx = ['askvol.' + str(i) for i in range(levels, 0, -1)]
idx.extend(['bidvol.' + str(i) for i in range(1, levels + 1, 1)])
plt.imshow(data.loc[:, idx].T, interpolation='nearest', aspect='auto')
plt.yticks(range(0, levels * 2, 1), idx)
plt.colorbar()
plt.tight_layout()
plt.show()
示例13: pearson_filter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def pearson_filter(projectPath, featuresDf, del_corr_status, del_corr_threshold, del_corr_plot_status):
print('Reducing features. Correlation threshold: ' + str(del_corr_threshold))
col_corr = set()
corr_matrix = featuresDf.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if (corr_matrix.iloc[i, j] >= del_corr_threshold) and (corr_matrix.columns[j] not in col_corr):
colname = corr_matrix.columns[i]
col_corr.add(colname)
if colname in featuresDf.columns:
del featuresDf[colname]
if del_corr_plot_status == 'yes':
print('Creating feature correlation heatmap...')
dateTime = datetime.now().strftime('%Y%m%d%H%M%S')
plt.matshow(featuresDf.corr())
plt.tight_layout()
plt.savefig(os.path.join(projectPath, 'logs', 'Feature_correlations_' + dateTime + '.png'), dpi=300)
plt.close('all')
print('Feature correlation heatmap .png saved in project_folder/logs directory')
return featuresDf
示例14: plot_path_hist
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def plot_path_hist(results, labels, tols, figsize, ylim=None):
configure_plt()
sns.set_palette('colorblind')
n_competitors = len(results)
fig, ax = plt.subplots(figsize=figsize)
width = 1. / (n_competitors + 1)
ind = np.arange(len(tols))
b = (1 - n_competitors) / 2.
for i in range(n_competitors):
plt.bar(ind + (i + b) * width, results[i], width,
label=labels[i])
ax.set_ylabel('path computation time (s)')
ax.set_xticks(ind + width / 2)
plt.xticks(range(len(tols)), ["%.0e" % tol for tol in tols])
if ylim is not None:
plt.ylim(ylim)
ax.set_xlabel(r"$\epsilon$")
plt.legend(loc='upper left')
plt.tight_layout()
plt.show(block=False)
return fig
示例15: test_if_scatterplot_colorbars_are_next_to_parent_axes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tight_layout [as 别名]
def test_if_scatterplot_colorbars_are_next_to_parent_axes(self):
import matplotlib.pyplot as plt
random_array = np.random.random((1000, 3))
df = pd.DataFrame(random_array,
columns=['A label', 'B label', 'C label'])
fig, axes = plt.subplots(1, 2)
df.plot.scatter('A label', 'B label', c='C label', ax=axes[0])
df.plot.scatter('A label', 'B label', c='C label', ax=axes[1])
plt.tight_layout()
points = np.array([ax.get_position().get_points()
for ax in fig.axes])
axes_x_coords = points[:, :, 0]
parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :]
colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :]
assert np.isclose(parent_distance,
colorbar_distance, atol=1e-7).all()