本文整理汇总了Python中matplotlib.pyplot.tick_params方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.tick_params方法的具体用法?Python pyplot.tick_params怎么用?Python pyplot.tick_params使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.tick_params方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: chisq_dist
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def chisq_dist():
fig = plt.figure(figsize=(6,4))
ivar = np.load("%s/val_ivar_norm.npz" %DATA_DIR)['arr_0']
npix = np.sum(ivar>0, axis=1)
chisq = np.load("%s/val_chisq.npz" %DATA_DIR)['arr_0']
redchisq = chisq/npix
nbins = 25
plt.hist(redchisq, bins=nbins, color='k', histtype="step",
lw=2, normed=False, alpha=0.3, range=(0,3))
plt.legend()
plt.xlabel("Reduced $\chi^2$", fontsize=16)
plt.tick_params(axis='both', labelsize=16)
plt.ylabel("Count", fontsize=16)
plt.axvline(x=1.0, linestyle='--', c='k')
fig.tight_layout()
#plt.show()
plt.savefig("chisq_dist.png")
示例2: make_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def make_plot(files, labels):
plt.figure()
for file_idx in range(len(files)):
rot_err, trans_err = read_csv(files[file_idx])
success_dict = count_success(trans_err)
x_range = success_dict.keys()
x_range.sort()
success = []
for i in x_range:
success.append(success_dict[i])
success = np.array(success)/total_cases
plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
# plt.scatter(x_range, success, s=50)
plt.ylabel('Success Ratio', fontsize=40)
plt.xlabel('Threshold for Translation Error', fontsize=40)
plt.tick_params(labelsize=40, width=3, length=10)
plt.grid(True)
plt.ylim(0,1.005)
plt.yticks(np.arange(0,1.2,0.2))
plt.xticks(np.arange(0,2.1,0.2))
plt.xlim(0,2)
plt.legend(fontsize=30, loc=4)
示例3: plot_DOY
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_DOY(dates, y, mpl_cmap):
""" Create a DOY plot
Args:
dates (iterable): sequence of datetime
y (np.ndarray): variable to plot
mpl_cmap (colormap): matplotlib colormap
"""
doy = np.array([d.timetuple().tm_yday for d in dates])
year = np.array([d.year for d in dates])
sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
marker='o', edgecolors='none', s=35)
plt.colorbar(sp)
months = mpl.dates.MonthLocator() # every month
months_fmrt = mpl.dates.DateFormatter('%b')
plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
plt.axes().xaxis.set_minor_locator(months)
plt.axes().xaxis.set_minor_formatter(months_fmrt)
plt.xlim(1, 366)
plt.xlabel('Day of Year')
示例4: snr_dist
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def snr_dist():
fig = plt.figure(figsize=(6,4))
tr_snr = np.load("../tr_SNR.npz")['arr_0']
snr = np.load("../val_SNR.npz")['arr_0']
nbins = 25
plt.hist(tr_snr, bins=nbins, color='k', histtype="step",
lw=2, normed=True, alpha=0.3, label="Training Set")
plt.hist(snr, bins=nbins, color='r', histtype="step",
lw=2, normed=True, alpha=0.3, label="Validation Set")
plt.legend()
plt.xlabel("S/N", fontsize=16)
plt.tick_params(axis='both', labelsize=16)
plt.ylabel("Normalized Count", fontsize=16)
fig.tight_layout()
plt.show()
#plt.savefig("snr_dist.png")
示例5: render
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def render(self, filename):
"""
Renders the attention graph over timesteps.
Args:
filename (string): filename to save the figure to.
"""
figure, axes = plt.subplots()
graph = np.stack(self.attentions)
axes.imshow(graph, cmap=plt.cm.Blues, interpolation="nearest")
axes.xaxis.tick_top()
axes.set_xticks(range(len(self.keys)))
axes.set_xticklabels(self.keys)
plt.setp(axes.get_xticklabels(), rotation=90)
axes.set_yticks(range(len(self.generated_values)))
axes.set_yticklabels(self.generated_values)
axes.set_aspect(1, adjustable='box')
plt.tick_params(axis='x', which='both', bottom='off', top='off')
plt.tick_params(axis='y', which='both', left='off', right='off')
figure.savefig(filename)
示例6: paramagg
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def paramagg(data):
'''
USE: paramagg(df)
Provides an overview in one plot for a parameter scan. Useful
to understand rough distribution of accuracacy and loss for both
test and train.
data = a pandas dataframe from hyperscan()
'''
plt.figure(num=None, figsize=(8, 8), dpi=80, facecolor='w', edgecolor='k')
plt.scatter(data.train_loss, data.train_acc, label='train')
plt.scatter(data.test_loss, data.test_acc, label='test')
plt.legend(loc='upper right')
plt.tick_params(axis='both', which='major', pad=15)
plt.xlabel('loss', fontsize=18, labelpad=15, color="gray")
plt.ylabel('accuracy', fontsize=18, labelpad=15, color="gray")
plt.show()
示例7: plot_bar_chart
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_bar_chart(self, data):
x = []
y = []
for item in data:
y.append(item['count'])
x.append(item['Implemented_by_partial_function'])
plt.barh(x, y)
plt.title("Top apis", fontsize=10)
plt.xlabel("Number of API Calls", fontsize=8)
plt.xticks([])
plt.ylabel("Partial function", fontsize=8)
plt.tick_params(axis='y', labelsize=8)
for i, j in zip(y, x):
plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '')
buf.close()
# Clear the previous plot.
plt.gcf().clear()
return image_base64
示例8: plot_topconsumer_bar_chart
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_topconsumer_bar_chart(self, data):
x = []
y = []
for item in data:
y.append(item['count'])
x.append(item['app_name'])
plt.barh(x, y)
plt.title("Top consumers", fontsize=10)
plt.xlabel("Number of API Calls", fontsize=8)
plt.xticks([])
plt.ylabel("Consumers", fontsize=8)
plt.tick_params(axis='y', labelsize=8)
for i, j in zip(y, x):
plt.text(i, j, str(i), clip_on=True, ha='center',va='center', fontsize=8)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
image_base64 = base64.b64encode(buf.getvalue()).decode('utf-8').replace('\n', '')
buf.close()
# Clear the previous plot.
plt.gcf().clear()
return image_base64
示例9: plot_dendrogram
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_dendrogram(self, **kwargs):
# Distances between each pair of children
distance = np.arange(self.children.shape[0])
position = np.arange(self.children.shape[0])
# Create linkage matrix and then plot the dendrogram
linkage_matrix = np.column_stack([
self.children, distance, position]
).astype(float)
# Plot the corresponding dendrogram
fig, ax = plt.subplots(figsize=(15, 7)) # set size
ax = dendrogram(linkage_matrix, **kwargs)
plt.tick_params(axis='x', bottom='off', top='off', labelbottom='off')
plt.tight_layout()
plt.show()
示例10: plot_setup
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_setup(title="", ylabel="edits"):
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(111)
plt.title(title)
plt.xlabel("date")
plt.ylabel(ylabel)
# x-ticks formatting
plt.gca().xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m-%d'))
plt.gca().xaxis.set_major_locator(mpl.dates.MonthLocator(interval=3))
plt.tick_params(axis="x", which="both", direction="out")
# y-ticks
plt.gca().yaxis.set_major_locator(mpl.ticker.MaxNLocator(nbins=10))
# show grid
plt.grid(True, which="both")
return ax
示例11: plot_trajectory
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot_trajectory(proj_file, dir_file, show=False):
""" Plot optimization trajectory on the plane spanned by given directions."""
assert exists(proj_file), 'Projection file does not exist.'
f = h5py.File(proj_file, 'r')
fig = plt.figure()
plt.plot(f['proj_xcoord'], f['proj_ycoord'], marker='.')
plt.tick_params('y', labelsize='x-large')
plt.tick_params('x', labelsize='x-large')
f.close()
if exists(dir_file):
f2 = h5py.File(dir_file,'r')
if 'explained_variance_ratio_' in f2.keys():
ratio_x = f2['explained_variance_ratio_'][0]
ratio_y = f2['explained_variance_ratio_'][1]
plt.xlabel('1st PC: %.2f %%' % (ratio_x*100), fontsize='xx-large')
plt.ylabel('2nd PC: %.2f %%' % (ratio_y*100), fontsize='xx-large')
f2.close()
fig.savefig(proj_file + '.pdf', dpi=300, bbox_inches='tight', format='pdf')
if show: plt.show()
示例12: show
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def show(self, idx=0, wavelet=None):
"""
Plot the wavelet of the specified source.
Parameters
----------
idx : int
Index of the source point for which to plot wavelet.
wavelet : ndarray or callable
Prescribed wavelet instead of one from this symbol.
"""
wavelet = wavelet or self.data[:, idx]
plt.figure()
plt.plot(self.time_values, wavelet)
plt.xlabel('Time (ms)')
plt.ylabel('Amplitude')
plt.tick_params()
plt.show()
# Pickling support
示例13: finalize_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def finalize_plot(allticks,handles):
plt.locator_params(axis='x', nticks=Noracles,nbins=Noracles)
plt.yticks([x[0] for x in allticks], [x[1] for x in allticks])
plt.tick_params(
axis='y', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
left='off', # ticks along the bottom edge are off
right='off' # ticks along the top edge are off
)
if LEGEND:
plt.legend([h[0] for h in handles],seriesnames,
loc='upper right',borderaxespad=0.,
ncol=1,fontsize=10,numpoints=1)
plt.gcf().tight_layout()
######################################################
# Data processing
示例14: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def plot(t, plots, shot_ind):
n = len(plots)
for i in range(0,n):
label, data = plots[i]
plt = py.subplot(n, 1, i+1)
plt.tick_params(labelsize=8)
py.grid()
py.xlim([t[0], t[-1]])
py.ylabel(label)
py.plot(t, data, 'k-')
py.scatter(t[shot_ind], data[shot_ind], marker='*', c='g')
py.xlabel("Time")
py.show()
py.close()
示例15: Energy_Flow
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import tick_params [as 别名]
def Energy_Flow(Time_Series):
Energy_Flow = {'Energy_Demand':0, 'Lost Load':0, 'Energy PV':0,'Curtailment':0, 'Energy Diesel':0, 'Discharge energy from the Battery':0, 'Charge energy to the Battery':0}
for v in Energy_Flow.keys():
if v == 'Energy PV':
Energy_Flow[v] = round((Time_Series[v].sum() - Time_Series['Curtailment'].sum()- Time_Series['Charge energy to the Battery'].sum())/1000000, 2)
else:
Energy_Flow[v] = round((Time_Series[v].sum())/1000000, 2)
c = ['From Generator', 'To Battery', 'Demand', 'From PV', 'From Battery', 'Curtailment', 'Lost Load']
plt.figure()
plt.bar((1,2,3,4,5,6,7), Energy_Flow.values(), color= 'b', alpha=0.3, align='center')
plt.xticks((1.2,2.2,3.2,4.2,5.2,6.2,7.2), c)
plt.xlabel('Technology')
plt.ylabel('Energy Flow (MWh)')
plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='on')
plt.xticks(rotation=-30)
plt.savefig('Results/Energy_Flow.png', bbox_inches='tight')
plt.show()
return Energy_Flow