本文整理汇总了Python中matplotlib.pyplot.stackplot方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.stackplot方法的具体用法?Python pyplot.stackplot怎么用?Python pyplot.stackplot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.stackplot方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_stackplot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def test_stackplot():
fig = plt.figure()
x = np.linspace(0, 10, 10)
y1 = 1.0 * x
y2 = 2.0 * x + 1
y3 = 3.0 * x + 2
ax = fig.add_subplot(1, 1, 1)
ax.stackplot(x, y1, y2, y3)
ax.set_xlim((0, 10))
ax.set_ylim((0, 70))
示例2: test_stackplot_baseline
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def test_stackplot_baseline():
np.random.seed(0)
def layers(n, m):
def bump(a):
x = 1 / (.1 + np.random.random())
y = 2 * np.random.random() - .5
z = 10 / (.1 + np.random.random())
for i in range(m):
w = (i / float(m) - y) * z
a[i] += x * np.exp(-w * w)
a = np.zeros((m, n))
for i in range(n):
for j in range(5):
bump(a[:, i])
return a
d = layers(3, 100)
fig = plt.figure()
plt.subplot(2, 2, 1)
plt.stackplot(list(xrange(100)), d.T, baseline='zero')
plt.subplot(2, 2, 2)
plt.stackplot(list(xrange(100)), d.T, baseline='sym')
plt.subplot(2, 2, 3)
plt.stackplot(list(xrange(100)), d.T, baseline='wiggle')
plt.subplot(2, 2, 4)
plt.stackplot(list(xrange(100)), d.T, baseline='weighted_wiggle')
示例3: test_stackplot_smoke
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def test_stackplot_smoke():
# Small smoke test for stackplot (see #12405)
plt.stackplot([1, 2, 3], [1, 2, 3])
示例4: stack_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def stack_plot(input_fn, display=False, outfile='stack_plot.png', max_n=20, normalize=False, dont_stack=False):
data = json.load(open(input_fn)) # TODO do we support multiple arguments here?
y = numpy.array(data['y'])
if y.shape[0] > max_n:
js = sorted(range(len(data['labels'])), key=lambda j: max(y[j]), reverse=True)
other_sum = numpy.sum(y[j] for j in js[max_n:])
top_js = sorted(js[:max_n], key=lambda j: data['labels'][j])
y = numpy.array([y[j] for j in top_js] + [other_sum])
labels = [data['labels'][j] for j in top_js] + ['other']
else:
labels = data['labels']
if normalize:
y = 100. * numpy.array(y) / numpy.sum(y, axis=0)
pyplot.figure(figsize=(13, 8))
pyplot.style.use('ggplot')
ts = [dateutil.parser.parse(t) for t in data['ts']]
colors = generate_n_colors(len(labels))
if dont_stack:
for color, label, series in zip(colors, labels, y):
pyplot.plot(ts, series, color=color, label=label, linewidth=2)
else:
pyplot.stackplot(ts, numpy.array(y), labels=labels, colors=colors)
pyplot.legend(loc=2)
if normalize:
pyplot.ylabel('Share of lines of code (%)')
pyplot.ylim([0, 100])
else:
pyplot.ylabel('Lines of code')
print('Writing output to %s' % outfile)
pyplot.savefig(outfile)
pyplot.tight_layout()
if display:
pyplot.show()
示例5: PerfMonPlotter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def PerfMonPlotter(perf_mon_records, time_window = None):
"""
For plotting performance monitoring records.
"""
# Entire records
pqos_records = perf_mon_records['pqos_records']
# perf_records = perf_mon_records['perf_records']
# # Select a time window if provided
# if time_window is not None:
# test_start = pqos_records['timestamp'].min()
# time_window = [5, 10]
# selection_bounds = [test_start + timedelta(seconds=time_window[0]), \
# test_start + timedelta(seconds=time_window[1])]
# pqos_records['In Test Bound'] = (pqos_records['timestamp']>selection_bounds[0]) \
# & (pqos_records['timestamp']<selection_bounds[1])
# perf_records['In Test Bound'] = (perf_records['timestamp']>time_window[0]) \
# & (perf_records['timestamp']<time_window[1])
# pqos_df = pqos_records[pqos_records['In Test Bound']==True]
# perf_df = perf_records[perf_records['In Test Bound']==True]
palette = sns.color_palette("rocket_r", 16)
# 'timestamp','Core','IPC','LLC Misses','LLC Util (KB)','MBL (MB/s)'
fig, axs = plt.subplots(ncols=2, nrows=2, sharex=True)
pqos_records_sum = pqos_records.groupby('timestamp').sum()
pqos_records_sum.plot(y='IPC', ax=axs[0][0])
pqos_records_sum.plot(y='MBL (MB/s)', ax=axs[0][1])
pqos_records_sum.plot(y='LLC Util (KB)', ax=axs[1][0])
pqos_records_sum.plot(y='LLC Misses', ax=axs[1][1])
axs[0][0].set_ylim([0,20])
# sns.relplot(data=pqos_records, x='timestamp', y='IPC', hue='Core', kind='line', palette=palette, alpha=0.75)
# sns.relplot(data=pqos_records, x='timestamp', y='MBL (MB/s)', hue='Core', kind='scatter', palette=palette, alpha=0.75)
# sns.lmplot(data=pqos_df.groupby('timestamp').sum(), x='IPC', y='MBL (MB/s)', palette=palette,
# truncate=True, order=5, fit_reg=False, scatter_kws={'alpha':0.5}, legend_out=False)
# sns.jointplot(data=pqos_df.groupby('timestamp').sum(), x='LLC Util (KB)', y='MBL (MB/s)', kind="hex", zorder=0)
# .plot_joint(sns.kdeplot, zorder=10, n_levels=25, bw='silverman')
# cpu-cycles,L1-dcache-loads,L1-dcache-load-misses,L1-icache-load-misses,dTLB-load-misses,dTLB-loads,
# iTLB-load-misses,iTLB-loads,branch-misses,context-switches,cpu-migrations,page-faults
# sns.relplot(data=perf_records, x='timestamp', y='context-switches', kind='line', palette=palette, alpha=0.75)
# plt.stackplot(perf_records['timestamp'], perf_records['r4f1'], perf_records['r2f1'], perf_records['r1f1'])
# sns.relplot(data=perf_df, x='context-switches', y='r1f1', kind='scatter', palette=palette, alpha=0.75)
# perf_records['Branch Miss Rate (%)'] = 100.0*perf_records['branch-misses']/perf_records['branches']
# sns.lmplot(data=perf_records, x='context-switches', y='block:block_plug',
# truncate=True, order=8, scatter_kws={'alpha':0.5}, legend_out=False)
# sns.jointplot(data=perf_df, x='dTLB-loads', y='iTLB-loads', kind="hex", zorder=0)
plt.show()
plt.close()
return True
示例6: stackplot_non_text_messages_percentage
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def stackplot_non_text_messages_percentage(msgs, path_to_save):
sns.set(style="whitegrid", palette="muted")
colors = ['y', 'b', 'c', 'r', 'g', 'm']
(x, y_total), (xticks, xticks_labels, xlabel) = _get_plot_data(msgs), _get_xticks(msgs)
stacks = stools.get_non_text_messages_grouped(y_total)
# Normalize values
for i in range(len(stacks[0]["groups"])):
total = sum(stack["groups"][i] for stack in stacks)
for stack in stacks:
if not total:
stack["groups"][i] = 0
else:
stack["groups"][i] /= total
plt.stackplot(x, *[stack["groups"] for stack in stacks], labels=[stack["type"] for stack in stacks],
colors=colors, alpha=0.7)
plt.margins(0, 0)
plt.xticks(xticks, rotation=65)
plt.yticks([i / 10 for i in range(0, 11, 2)])
ax = plt.gca()
ax.set_xticklabels(xticks_labels)
ax.set_yticklabels([f"{i}%" for i in range(0, 101, 20)])
ax.tick_params(axis='x', bottom=True, color="#A9A9A9")
ax.set(xlabel=xlabel, ylabel="non-text messages")
# https://stackoverflow.com/a/4701285
# Shrink current axis by 10%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
# Put a legend to the right of the current axis
ax.legend(loc="center left", bbox_to_anchor=(1, 0.5))
fig = plt.gcf()
fig.set_size_inches(11, 8)
fig.savefig(os.path.join(path_to_save, stackplot_non_text_messages_percentage.__name__ + ".png"), dpi=500)
# plt.show()
log_line(f"{stackplot_non_text_messages_percentage.__name__} was created.")
plt.close("all")
示例7: fraction_timeseries
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import stackplot [as 别名]
def fraction_timeseries(
adata,
xkey="clusters",
tkey="dpt_pseudotime",
bins=30,
legend_loc="best",
title=None,
fontsize=None,
ax=None,
figsize=None,
dpi=None,
xlabel=None,
ylabel=None,
show=True,
):
t = np.linspace(0, 1 + 1 / bins, bins)
types = np.unique(adata.obs[xkey].values)
y = []
for i in range(bins - 1):
mask = np.all(
[adata.obs[tkey].values <= t[i + 1], adata.obs[tkey].values > t[i]], axis=0
)
x = list(adata[mask].obs[xkey].values)
y.append([])
for name in types:
occur = x.count(name)
y[-1].append(occur)
y[-1] /= np.sum(y[-1])
y = np.array(y).T
ax = pl.figure(figsize=figsize, dpi=dpi) if ax is None else ax
c = None
if "clusters_colors" in adata.uns.keys():
c = adata.uns["clusters_colors"]
pl.stackplot(t[:-1], y, baseline="zero", labels=types, colors=c, edgecolor="white")
pl.legend(types, loc=legend_loc)
if title is not None:
pl.title(title, fontsize=fontsize)
pl.xlabel(tkey if xlabel is None else xlabel, fontsize=fontsize)
pl.ylabel(f"{xkey} fractions" if ylabel is None else ylabel, fontsize=fontsize)
pl.xlim(adata.obs[tkey].values.min(), adata.obs[tkey].values.max())
pl.ylim(0, 1)
if not show:
return ax
else:
pl.show()