本文整理汇总了Python中matplotlib.pyplot.show方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.show方法的具体用法?Python pyplot.show怎么用?Python pyplot.show使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.show方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: demo_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def demo_plot():
audio = './data/esc10/audio/Dog/1-30226-A.ogg'
y, sr = librosa.load(audio, sr=44100)
y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6) # n_steps控制音调变化尺度
y_ts = librosa.effects.time_stretch(y, rate=1.2) # rate控制时间维度的变换尺度
plt.subplot(311)
plt.plot(y)
plt.title('Original waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.subplot(312)
plt.plot(y_ts)
plt.title('Time Stretch transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
plt.subplot(313)
plt.plot(y_ps)
plt.title('Pitch Shift transformed waveform')
plt.axis([0, 200000, -0.4, 0.4])
# plt.axis([88000, 94000, -0.4, 0.4])
plt.tight_layout()
plt.show()
示例2: show
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def show(mnist, targets, ret):
target_ids = range(len(set(targets)))
colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'violet', 'orange', 'purple']
plt.figure(figsize=(12, 10))
ax = plt.subplot(aspect='equal')
for label in set(targets):
idx = np.where(np.array(targets) == label)[0]
plt.scatter(ret[idx, 0], ret[idx, 1], c=colors[label], label=label)
for i in range(0, len(targets), 250):
img = (mnist[i][0] * 0.3081 + 0.1307).numpy()[0]
img = OffsetImage(img, cmap=plt.cm.gray_r, zoom=0.5)
ax.add_artist(AnnotationBbox(img, ret[i]))
plt.legend()
plt.show()
示例3: _capture2dImage
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def _capture2dImage(self, cameraId):
# Capture Image in RGB
# WARNING : The same Name could be used only six time.
strName = "capture2DImage_{}".format(random.randint(1,10000000000))
clientRGB = self.video_service.subscribeCamera(strName, cameraId, AL_kVGA, 11, 10)
imageRGB = self.video_service.getImageRemote(clientRGB)
imageWidth = imageRGB[0]
imageHeight = imageRGB[1]
array = imageRGB[6]
image_string = str(bytearray(array))
# Create a PIL Image from our pixel array.
im = Image.frombytes("RGB", (imageWidth, imageHeight), image_string)
# Save the image.
image_name_2d = "images/img2d-" + str(self.imageNo2d) + ".png"
im.save(image_name_2d, "PNG") # Stored in images folder in the pwd, if not present then create one
self.imageNo2d += 1
im.show()
return
示例4: _capture3dImage
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def _capture3dImage(self):
# Depth Image in RGB
# WARNING : The same Name could be used only six time.
strName = "capture3dImage_{}".format(random.randint(1,10000000000))
clientRGB = self.video_service.subscribeCamera(strName, AL_kDepthCamera, AL_kQVGA, 11, 10)
imageRGB = self.video_service.getImageRemote(clientRGB)
imageWidth = imageRGB[0]
imageHeight = imageRGB[1]
array = imageRGB[6]
image_string = str(bytearray(array))
# Create a PIL Image from our pixel array.
im = Image.frombytes("RGB", (imageWidth, imageHeight), image_string)
# Save the image.
image_name_3d = "images/img3d-" + str(self.imageNo3d) + ".png"
im.save(image_name_3d, "PNG") # Stored in images folder in the pwd, if not present then create one
self.imageNo3d += 1
im.show()
return
示例5: plot_mul
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def plot_mul(Y_hat, Y, pred_len):
"""
PLots the predicted data versus true data
Input: Predicted data, True Data, Length of prediction
Output: return plot
Note: Run from timeSeriesPredict.py
"""
fig = plt.figure(facecolor='white')
ax = fig.add_subplot(111)
ax.plot(Y, label='Y')
# Print the predictions in its respective series-length
for i, j in enumerate(Y_hat):
shift = [None for p in range(i * pred_len)]
plt.plot(shift + j, label='Y_hat')
plt.legend()
plt.show()
示例6: atest_plot_samples
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def atest_plot_samples(self):
dm = np.linspace(4., 19., 1001)
samples = []
for dm_k in dm:
d = 10.**(dm_k/5.-2.)
samples.append(self._interp_ebv(self._test_data[0], d))
samples = np.array(samples).T
# print samples
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
for s in samples:
ax.plot(dm, s, lw=2., alpha=0.5)
plt.show()
示例7: show_result_pyplot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def show_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15, 10)):
"""Visualize the detection results on the image.
Args:
model (nn.Module): The loaded detector.
img (str or np.ndarray): Image filename or loaded image.
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
score_thr (float): The threshold to visualize the bboxes and masks.
fig_size (tuple): Figure size of the pyplot figure.
"""
if hasattr(model, 'module'):
model = model.module
img = model.show_result(img, result, score_thr=score_thr, show=False)
plt.figure(figsize=fig_size)
plt.imshow(mmcv.bgr2rgb(img))
plt.show()
示例8: compute_roc
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def compute_roc(y_true, y_pred, plot=False):
"""
TODO
:param y_true: ground truth
:param y_pred: predictions
:param plot:
:return:
"""
fpr, tpr, _ = roc_curve(y_true, y_pred)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例9: compute_roc_rfeinman
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
"""
TODO
:param probs_neg:
:param probs_pos:
:param plot:
:return:
"""
probs = np.concatenate((probs_neg, probs_pos))
labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
fpr, tpr, _ = roc_curve(labels, probs)
auc_score = auc(fpr, tpr)
if plot:
plt.figure(figsize=(7, 6))
plt.plot(fpr, tpr, color='blue',
label='ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc='lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()
return fpr, tpr, auc_score
示例10: generate_dataset
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def generate_dataset(true_w, true_b):
num_examples = 1000
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
# 真实 label
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 添加噪声
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
# 展示下分布
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
plt.show()
return features, labels
# batch 读取数据集
示例11: run_eval
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def run_eval(sess, test_X, test_y):
ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
ds = ds.batch(1)
X, y = ds.make_one_shot_iterator().get_next()
with tf.variable_scope("model", reuse=True):
prediction, _, _ = lstm_model(X, [0.0], False)
predictions = []
labels = []
for i in range(TESTING_EXAMPLES):
p, l = sess.run([prediction, y])
predictions.append(p)
labels.append(l)
predictions = np.array(predictions).squeeze()
labels = np.array(labels).squeeze()
rmse = np.sqrt(((predictions-labels) ** 2).mean(axis=0))
print("Mean Square Error is: %f" % rmse)
plt.figure()
plt.plot(predictions, label='predictions')
plt.plot(labels, label='real_sin')
plt.legend()
plt.show()
示例12: data_stat
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def data_stat():
"""data statistic"""
audio_path = './data/esc10/audio/'
class_list = [os.path.basename(i) for i in glob(audio_path + '*')]
nums_each_class = [len(glob(audio_path + cl + '/*.ogg')) for cl in class_list]
rects = plt.bar(range(len(nums_each_class)), nums_each_class)
index = list(range(len(nums_each_class)))
plt.title('Numbers of each class for ESC-10 dataset')
plt.ylim(ymax=60, ymin=0)
plt.xticks(index, class_list, rotation=45)
plt.ylabel("numbers")
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.tight_layout()
plt.show()
示例13: visualize_2D_trip
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
colors = ['red'] # Depot is first city
for i in range(len(tw_open)-1):
colors.append('blue')
plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with TW
tw_open = np.rint(tw_open)
tw_close = np.rint(tw_close)
time_window = np.concatenate((tw_open,tw_close),axis=1)
for tw, (x, y) in zip(time_window,(zip(X,Y))):
plt.annotate(tw,xy=(x, y))
plt.xlim(0,60)
plt.ylim(0,60)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例14: visualize_sampling
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def visualize_sampling(self,permutations):
max_length = len(permutations[0])
grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
transposed_permutations = np.transpose(permutations)
for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
for u,v in zip(city_indices, counts):
grid[t][u]+=v # update grid with counts from the batch of permutations
# plot heatmap
fig = plt.figure()
rcParams.update({'font.size': 22})
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(grid, interpolation='nearest', cmap='gray')
plt.colorbar()
plt.title('Sampled permutations')
plt.ylabel('Time t')
plt.xlabel('City i')
plt.show()
# Heatmap of attention (x=cities; y=steps)
示例15: visualize_2D_trip
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import show [as 别名]
def visualize_2D_trip(self, trip):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
plt.scatter(trip[:,0], trip[:,1], s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with order
labels = range(len(trip))
for i, (x, y) in zip(labels,(zip(X,Y))):
plt.annotate(i,xy=(x, y))
plt.xlim(0,100)
plt.ylim(0,100)
plt.show()
# Heatmap of permutations (x=cities; y=steps)