当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.scatter方法代码示例

本文整理汇总了Python中matplotlib.pyplot.scatter方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.scatter方法的具体用法?Python pyplot.scatter怎么用?Python pyplot.scatter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.scatter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: show

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def show(mnist, targets, ret):
    target_ids = range(len(set(targets)))
    
    colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'violet', 'orange', 'purple']
    
    plt.figure(figsize=(12, 10))
    
    ax = plt.subplot(aspect='equal')
    for label in set(targets):
        idx = np.where(np.array(targets) == label)[0]
        plt.scatter(ret[idx, 0], ret[idx, 1], c=colors[label], label=label)
    
    for i in range(0, len(targets), 250):
        img = (mnist[i][0] * 0.3081 + 0.1307).numpy()[0]
        img = OffsetImage(img, cmap=plt.cm.gray_r, zoom=0.5) 
        ax.add_artist(AnnotationBbox(img, ret[i]))
    
    plt.legend()
    plt.show() 
开发者ID:peisuke,项目名称:MomentumContrast.pytorch,代码行数:21,代码来源:test.py

示例2: generate_dataset

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def generate_dataset(true_w, true_b):
    num_examples = 1000

    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    # 真实 label
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    # 添加噪声
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    # 展示下分布
    plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
    plt.show()
    
    return features, labels


# batch 读取数据集 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:18,代码来源:3_linear_regression_raw.py

示例3: visualize_2D_trip

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})
        # Plot cities
        colors = ['red'] # Depot is first city
        for i in range(len(tw_open)-1):
            colors.append('blue')
        plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)
        # Annotate cities with TW
        tw_open = np.rint(tw_open)
        tw_close = np.rint(tw_close)
        time_window = np.concatenate((tw_open,tw_close),axis=1)
        for tw, (x, y) in zip(time_window,(zip(X,Y))):
            plt.annotate(tw,xy=(x, y))  
        plt.xlim(0,60)
        plt.ylim(0,60)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
开发者ID:MichelDeudon,项目名称:neural-combinatorial-optimization-rl-tensorflow,代码行数:27,代码来源:dataset.py

示例4: visualize_2D_trip

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def visualize_2D_trip(self, trip):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})

        # Plot cities
        plt.scatter(trip[:,0], trip[:,1], s=200)

        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)

        # Annotate cities with order
        labels = range(len(trip))
        for i, (x, y) in zip(labels,(zip(X,Y))):
            plt.annotate(i,xy=(x, y))  

        plt.xlim(0,100)
        plt.ylim(0,100)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
开发者ID:MichelDeudon,项目名称:neural-combinatorial-optimization-rl-tensorflow,代码行数:26,代码来源:dataset.py

示例5: plot_ours_mean

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot_ours_mean(measures_readers, metric, color, show_ids):
    if not show_ids:
        show_ids = []
    ops = []
    for first, measures_reader in flag_first_iter(measures_readers):
        this_op_bpps = []
        this_op_values = []
        for img_name, bpp, value in measures_reader.iter_metric(metric):
            this_op_bpps.append(bpp)
            this_op_values.append(value)
        ours_mean_bpp, ours_mean_value = np.mean(this_op_bpps), np.mean(this_op_values)
        ops.append((ours_mean_bpp, ours_mean_value))
        plt.scatter(ours_mean_bpp, ours_mean_value, marker='x', zorder=10, color=color,
                    label='Ours' if first else None)
    for (bpp, value), job_id in zip(sorted(ops), show_ids):
        plt.annotate(job_id, (bpp + 0.04, value),
                     horizontalalignment='bottom', verticalalignment='center') 
开发者ID:fab-jul,项目名称:imgcomp-cvpr,代码行数:19,代码来源:plotter.py

示例6: visualize_cluster

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def visualize_cluster(coords, cluster, cluster_labels,
                      cluster_name=None, size=1, viz_prefix='vc',
                      image_suffix='.svg'):
    if not cluster_name:
        cluster_name = cluster
    labels = [ 1 if c_i == cluster else 0
               for c_i in cluster_labels ]
    c_idx = [ i for i in range(len(labels)) if labels[i] == 1 ]
    nc_idx = [ i for i in range(len(labels)) if labels[i] == 0 ]
    colors = np.array([ '#cccccc', '#377eb8' ])
    image_fname = '{}_cluster{}{}'.format(
        viz_prefix, cluster, image_suffix
    )
    plt.figure()
    plt.scatter(coords[nc_idx, 0], coords[nc_idx, 1],
                c=colors[0], s=size)
    plt.scatter(coords[c_idx, 0], coords[c_idx, 1],
                c=colors[1], s=size)
    plt.title(str(cluster_name))
    plt.savefig(image_fname, dpi=500) 
开发者ID:brianhie,项目名称:scanorama,代码行数:22,代码来源:utils.py

示例7: make_plot

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def make_plot(files, labels):
	plt.figure()
	for file_idx in range(len(files)):
		rot_err, trans_err = read_csv(files[file_idx])
		success_dict = count_success(trans_err)

		x_range = success_dict.keys()
		x_range.sort()
		success = []
		for i in x_range:
			success.append(success_dict[i])
		success = np.array(success)/total_cases

		plt.plot(x_range, success, linewidth=3, label=labels[file_idx])
		# plt.scatter(x_range, success, s=50)
	plt.ylabel('Success Ratio', fontsize=40)
	plt.xlabel('Threshold for Translation Error', fontsize=40)
	plt.tick_params(labelsize=40, width=3, length=10)
	plt.grid(True)
	plt.ylim(0,1.005)
	plt.yticks(np.arange(0,1.2,0.2))
	plt.xticks(np.arange(0,2.1,0.2))
	plt.xlim(0,2)
	plt.legend(fontsize=30, loc=4) 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:26,代码来源:plot_threshold_vs_success_trans.py

示例8: plot_3d

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot_3d(*args, no_fill=False, labels=None, **kwargs):
    fig = plt.figure()
    from mpl_toolkits.mplot3d import Axes3D
    ax = fig.add_subplot(111, projection='3d')

    for i, F in enumerate(args):

        if no_fill:
            kwargs["s"] = 20
            kwargs["marker"] = '.'
            kwargs["facecolors"] = (0, 0, 0, 0)
            kwargs["edgecolors"] = 'r'

        if labels:
            ax.scatter(F[:, 0], F[:, 1], F[:, 2], label=labels[i], **kwargs)
        else:
            ax.scatter(F[:, 0], F[:, 1], F[:, 2], **kwargs)

    return ax 
开发者ID:msu-coinlab,项目名称:pymoo,代码行数:21,代码来源:plotting.py

示例9: show_landmarks

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
    """Show image with pred_landmarks"""
    pred_landmarks = []
    pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
    pred_landmarks = pred_landmarks.squeeze()*4

    # pred_landmarks2 = get_preds_fromhm2(heatmap)
    heatmap = np.max(gt_heatmap, axis=0)
    heatmap = heatmap / np.max(heatmap)
    # image = ski_transform.resize(image, (64, 64))*255
    image = image.astype(np.uint8)
    heatmap = np.max(gt_heatmap, axis=0)
    heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
    heatmap *= 255
    heatmap = heatmap.astype(np.uint8)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    plt.imshow(image)
    plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g')
    plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r')
    plt.pause(0.001)  # pause a bit so that plots are updated 
开发者ID:protossw512,项目名称:AdaptiveWingLoss,代码行数:22,代码来源:utils.py

示例10: plot

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot(self, line_width=1, point_radius=math.sqrt(2.0), annotation_size=8, dpi=120, save=True, name=None):
        x = [self.nodes[i][0] for i in self.global_best_tour]
        x.append(x[0])
        y = [self.nodes[i][1] for i in self.global_best_tour]
        y.append(y[0])
        plt.plot(x, y, linewidth=line_width)
        plt.scatter(x, y, s=math.pi * (point_radius ** 2.0))
        plt.title(self.mode)
        for i in self.global_best_tour:
            plt.annotate(self.labels[i], self.nodes[i], size=annotation_size)
        if save:
            if name is None:
                name = '{0}.png'.format(self.mode)
            plt.savefig(name, dpi=dpi)
        plt.show()
        plt.gcf().clear() 
开发者ID:rochakgupta,项目名称:aco-tsp,代码行数:18,代码来源:aco_tsp.py

示例11: main

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def main(txtfile = 'Ateamclipper.txt', outfile = 'Ateamclipper.png'):

    frac_list_xx = []
    frac_list_yy = []
    freq_list    = []
    with open(txtfile, 'r') as infile:
        for line in infile:
            freq_list.append(float(line.split()[0]))
            frac_list_xx.append(float(line.split()[1]))
            frac_list_yy.append(float(line.split()[2]))
    
    # Plot the amount of clipped data vs. frequency potentially contaminated by the A-team
    plt.scatter(numpy.array(freq_list) / 1e6, numpy.array(frac_list_xx), marker = '.', s = 10)
    plt.xlabel('frequency [MHz]')
    plt.ylabel('A-team clipping fraction [%]')
    plt.savefig(outfile)
    return(0) 
开发者ID:lofar-astron,项目名称:prefactor,代码行数:19,代码来源:plot_Ateamclipper.py

示例12: main

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def main(ms_list, frac_list, outfile='unflagged_fraction.png'):

    ms_list = input2strlist_nomapfile(ms_list)
    frac_list = input2strlist_nomapfile(frac_list)
    frac_list = np.array([float(f) for f in frac_list])
    outdir = os.path.dirname(outfile)
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Get frequencies
    freq_list = []
    for ms in ms_list:
        # open the main table and print some info about the MS
        t = pt.table(ms, readonly=True, ack=False)
        tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),readonly=True,ack=False)
        ref_freq = tfreq.getcol('REF_FREQUENCY',nrow=1)[0]
        freq_list.append(ref_freq)
    freq_list = np.array(freq_list) / 1e6  # MHz

    # Plot the unflagged fraction vs. frequency
    plt.scatter(freq_list, frac_list)
    plt.xlabel('frequency [MHz]')
    plt.ylabel('unflagged fraction')
    plt.savefig(outfile) 
开发者ID:lofar-astron,项目名称:prefactor,代码行数:26,代码来源:plot_unflagged_fraction.py

示例13: plot_coordinates

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot_coordinates(coordinates, plot_path, markers, label_names, fig_num):
    matplotlib.use('svg')
    import matplotlib.pyplot as plt

    plt.figure(fig_num)
    for i in range(len(markers) - 1):
        plt.scatter(x=coordinates[markers[i]:markers[i + 1], 0],
                    y=coordinates[markers[i]:markers[i + 1], 1],
                    marker=plot_markers[i % len(plot_markers)],
                    c=colors[i % len(colors)],
                    label=label_names[i], alpha=0.75)

    plt.legend(loc='upper right', fontsize='x-large')
    plt.axis('off')
    plt.savefig(fname=plot_path, format="svg", bbox_inches='tight', transparent=True)
    plt.close() 
开发者ID:vineetjohn,项目名称:linguistic-style-transfer,代码行数:18,代码来源:tsne_visualizer.py

示例14: plot_TS

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot_TS(dates, y, seasons):
    """ Create a standard timeseries plot

    Args:
        dates (iterable): sequence of datetime
        y (np.ndarray): variable to plot
        seasons (bool): Plot seasonal symbology
    """
    # Plot data
    if seasons:
        months = np.array([d.month for d in dates])
        for season_months, color, alpha in SEASONS.values():
            season_idx = np.in1d(months, season_months)
            plt.plot(dates[season_idx], y[season_idx], marker='o',
                     mec=color, mfc=color, alpha=alpha, ls='')
    else:
        plt.scatter(dates, y, c='k', marker='o', edgecolors='none', s=35)
    plt.xlabel('Date') 
开发者ID:ceholden,项目名称:yatsm,代码行数:20,代码来源:pixel.py

示例15: plot_DOY

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import scatter [as 别名]
def plot_DOY(dates, y, mpl_cmap):
    """ Create a DOY plot

    Args:
        dates (iterable): sequence of datetime
        y (np.ndarray): variable to plot
        mpl_cmap (colormap): matplotlib colormap
    """
    doy = np.array([d.timetuple().tm_yday for d in dates])
    year = np.array([d.year for d in dates])

    sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap,
                     marker='o', edgecolors='none', s=35)
    plt.colorbar(sp)

    months = mpl.dates.MonthLocator()  # every month
    months_fmrt = mpl.dates.DateFormatter('%b')

    plt.tick_params(axis='x', which='minor', direction='in', pad=-10)
    plt.axes().xaxis.set_minor_locator(months)
    plt.axes().xaxis.set_minor_formatter(months_fmrt)

    plt.xlim(1, 366)
    plt.xlabel('Day of Year') 
开发者ID:ceholden,项目名称:yatsm,代码行数:26,代码来源:pixel.py


注:本文中的matplotlib.pyplot.scatter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。