本文整理汇总了Python中matplotlib.pyplot.rc方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.rc方法的具体用法?Python pyplot.rc怎么用?Python pyplot.rc使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.rc方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dosplot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def dosplot (filename = None, data = None, fermi = None):
if (filename is not None): data = np.loadtxt(filename)
elif (data is not None): data = data
import matplotlib.pyplot as plt
from matplotlib import rc
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.plot(data.T[0], data.T[1], label='MF Spin-UP', linestyle=':',color='r')
plt.fill_between(data.T[0], 0, data.T[1], facecolor='r',alpha=0.1, interpolate=True)
plt.plot(data.T[0], data.T[2], label='QP Spin-UP',color='r')
plt.fill_between(data.T[0], 0, data.T[2], facecolor='r',alpha=0.5, interpolate=True)
plt.plot(data.T[0],-data.T[3], label='MF Spin-DN', linestyle=':',color='b')
plt.fill_between(data.T[0], 0, -data.T[3], facecolor='b',alpha=0.1, interpolate=True)
plt.plot(data.T[0],-data.T[4], label='QP Spin-DN',color='b')
plt.fill_between(data.T[0], 0, -data.T[4], facecolor='b',alpha=0.5, interpolate=True)
if (fermi!=None): plt.axvline(x=fermi ,color='k', linestyle='--') #label='Fermi Energy'
plt.axhline(y=0,color='k')
plt.title('Total DOS', fontsize=20)
plt.xlabel('Energy (eV)', fontsize=15)
plt.ylabel('Density of States (electron/eV)', fontsize=15)
plt.legend()
plt.savefig("dos_eigen.svg", dpi=900)
plt.show()
示例2: setup_latex_env_notebook
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def setup_latex_env_notebook(pf, latexExists):
""" This is needed for use of the latex_envs notebook extension
which allows the use of environments in Markdown.
Parameters
-----------
pf: str (platform)
output of determine_platform()
"""
import os
from matplotlib import rc
import matplotlib.pyplot as plt
plt.rc('font', family='serif')
plt.rc('text', usetex=latexExists)
if latexExists:
latex_preamble = r'\usepackage{amsmath}\usepackage{amsfonts}\usepackage[T1]{fontenc}'
latexdefs_path = os.getcwd()+'/latexdefs.tex'
if os.path.isfile(latexdefs_path):
latex_preamble = latex_preamble+r'\input{'+latexdefs_path+r'}'
else: # the required latex_envs package needs this file to exist even if it is empty
from pathlib import Path
Path(latexdefs_path).touch()
plt.rcParams['text.latex.preamble'] = latex_preamble
示例3: test_rc_tick
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def test_rc_tick():
d = {'xtick.bottom': False, 'xtick.top': True,
'ytick.left': True, 'ytick.right': False}
with plt.rc_context(rc=d):
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
xax = ax1.xaxis
yax = ax1.yaxis
# tick1On bottom/left
assert not xax._major_tick_kw['tick1On']
assert xax._major_tick_kw['tick2On']
assert not xax._minor_tick_kw['tick1On']
assert xax._minor_tick_kw['tick2On']
assert yax._major_tick_kw['tick1On']
assert not yax._major_tick_kw['tick2On']
assert yax._minor_tick_kw['tick1On']
assert not yax._minor_tick_kw['tick2On']
示例4: test_rc_major_minor_tick
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def test_rc_major_minor_tick():
d = {'xtick.top': True, 'ytick.right': True, # Enable all ticks
'xtick.bottom': True, 'ytick.left': True,
# Selectively disable
'xtick.minor.bottom': False, 'xtick.major.bottom': False,
'ytick.major.left': False, 'ytick.minor.left': False}
with plt.rc_context(rc=d):
fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
xax = ax1.xaxis
yax = ax1.yaxis
# tick1On bottom/left
assert not xax._major_tick_kw['tick1On']
assert xax._major_tick_kw['tick2On']
assert not xax._minor_tick_kw['tick1On']
assert xax._minor_tick_kw['tick2On']
assert not yax._major_tick_kw['tick1On']
assert yax._major_tick_kw['tick2On']
assert not yax._minor_tick_kw['tick1On']
assert yax._minor_tick_kw['tick2On']
示例5: test_tilde_in_tempfilename
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def test_tilde_in_tempfilename(tmpdir):
# Tilde ~ in the tempdir path (e.g. TMPDIR, TMP or TEMP on windows
# when the username is very long and windows uses a short name) breaks
# latex before https://github.com/matplotlib/matplotlib/pull/5928
base_tempdir = Path(str(tmpdir), "short-1")
base_tempdir.mkdir()
# Change the path for new tempdirs, which is used internally by the ps
# backend to write a file.
with cbook._setattr_cm(tempfile, tempdir=str(base_tempdir)):
# usetex results in the latex call, which does not like the ~
plt.rc('text', usetex=True)
plt.plot([1, 2, 3, 4])
plt.xlabel(r'\textbf{time} (s)')
output_eps = os.path.join(str(base_tempdir), 'tex_demo.eps')
# use the PS backend to write the file...
plt.savefig(output_eps, format="ps")
示例6: __init__
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def __init__(self, dataset, rows=1, grid=True):
# We need to handle a strategy being passed
if isinstance(dataset, strategy.Strategy):
self.strategy = dataset
self.data_frame = self.strategy.dataset.data_frame
self.realtime_data_frame = dataset.realtime_data_frame
else: # Assume a dataset was passed
self.strategy = None
self.data_frame = dataset.data_frame
self.realtime_data_frame = None
self.data_frame.reset_index(inplace=True)
date_conversion = lambda date: date2num(date.to_pydatetime())
self.data_frame['DATE'] = self.data_frame['Date'].apply(date_conversion)
self.rows = rows
if grid:
plt.rc('axes', grid=True)
plt.rc('grid', color='0.75', linestyle='-', linewidth='0.2')
self.current_figure = None
self.figure_first_ax = None
self.figure_rows = 1
self.legend = []
self.legend_labels = []
self.add_figure(self.rows)
self.logger = logger.Logger(self.__class__.__name__)
self.logger.info('dataset: %s rows: %s grid: %s' %(dataset, rows, grid))
示例7: get_next_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def get_next_plot(self):
if self.pdf is None:
plt.rc('pdf', fonttype=42)
self.pdf = PdfPages(self.pdfpath)
newfig = False
if self.pidx == 0 or self.pidx == self.rows * self.cols:
# Start a new pdf page
if self.fig is not None:
if self.save_tight: plt.tight_layout()
self.pdf.savefig(self.fig, bbox_inches=self.bbox_inches)
self.fig = None
newfig = True
self.pidx = 0
self.pidx += 1
if newfig: self.fig = plt.figure()
self.plotcount += 1
return self.fig.add_subplot(self.rows, self.cols, self.pidx)
示例8: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def plot(filename, vcl, rand_vcl, kcen_vcl):
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
fig = plt.figure(figsize=(7,3))
ax = plt.gca()
plt.plot(np.arange(len(vcl))+1, vcl, label='VCL', marker='o')
plt.plot(np.arange(len(rand_vcl))+1, rand_vcl, label='VCL + Random Coreset', marker='o')
plt.plot(np.arange(len(kcen_vcl))+1, kcen_vcl, label='VCL + K-center Coreset', marker='o')
ax.set_xticks(range(1, len(vcl)+1))
ax.set_ylabel('Average accuracy')
ax.set_xlabel('\# tasks')
ax.legend()
fig.savefig(filename, bbox_inches='tight')
plt.close()
示例9: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def plot(samples, path = None, true_value = 5, title = 'ABC posterior'):
Bayes_estimate = np.mean(samples, axis = 0)
theta = true_value
xmin, xmax = max(samples[:,0]), min(samples[:,0])
positions = np.linspace(xmin, xmax, samples.shape[0])
gaussian_kernel = gaussian_kde(samples[:,0].reshape(samples.shape[0],))
values = gaussian_kernel(positions)
plt.figure()
plt.plot(positions,gaussian_kernel(positions))
plt.plot([theta, theta],[min(values), max(values)+.1*(max(values)-min(values))])
plt.plot([Bayes_estimate, Bayes_estimate],[min(values), max(values)+.1*(max(values)-min(values))])
plt.ylim([min(values), max(values)+.1*(max(values)-min(values))])
plt.xlabel(r'$\theta$')
plt.ylabel('density')
#plt.xlim([0,1])
plt.rc('axes', labelsize=15)
plt.legend(loc='best', frameon=False, numpoints=1)
font = {'size' : 15}
plt.rc('font', **font)
plt.title(title)
if path is not None :
plt.savefig(path)
return plt
示例10: set_default_matplotlib_options
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def set_default_matplotlib_options():
# font options
font = {
# 'family' : 'normal',
#'weight' : 'bold',
'size' : 30
}
matplotlib.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']})
# matplotlib.use('cairo')
matplotlib.rc('text', usetex=True)
matplotlib.rcParams['text.usetex'] = True
plt.rc('font', **font)
plt.rc('lines', linewidth=3, markersize=10)
# matplotlib.rcParams['ps.useafm'] = True
# matplotlib.rcParams['pdf.use14corefonts'] = True
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
示例11: main
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def main():
# Process args and conf
args = parse_args()
groups = process_data(args)
if args.run == "plot":
# Set the global fontsize for all plots
plt.rc('font', size=args.fontsize)
# Plot figure
fig = plot_figure(args, groups)
# fig = plot_histos(args, groups)
# Save figure
pngpath = os.path.join(FIG_DIR, args.filename + ".png")
plt.savefig(pngpath)
plt.show()
elif args.run == "log":
scores = benchmark_scores(groups)
txtfile = os.path.join(FIG_DIR, args.filename)
dataio.save_scores(scores, txtfile, args)
示例12: _initialisePlot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def _initialisePlot(self):
plt.rc('grid', linestyle=":", color='black')
plt.rcParams['axes.facecolor'] = 'black'
plt.rcParams['axes.edgecolor'] = 'white'
plt.rcParams['grid.alpha'] = 1
plt.rcParams['grid.color'] = "green"
plt.grid(True)
plt.xlim(self.PLOTXMIN, self.PLOTXMAX)
plt.ylim(self.PLOTYMIN, self.PLOTYMAX)
self.graph, = plt.plot([], [], 'o')
return
示例13: prettyPlot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def prettyPlot(self):
""" Makes Plots Pretty
"""
plt.rc('axes',linewidth=2)
plt.rc('lines',linewidth=2)
plt.rcParams['axes.linewidth']=2
plt.rc('font',weight='bold')
示例14: pdosplot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def pdosplot (filename = None, data = None, size = None, fermi = None):
if (filename is not None): data = np.loadtxt(filename).T
elif (data is not None): data = data
if (size is None): print('Please give number of resolved angular momentum!')
if (fermi is None): print ('Please give fermi energy')
import matplotlib.pyplot as plt
from matplotlib import rc
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
orb_name = ['$s$','$p$','$d$','$f$','$g$','$h$','$i$','$k$']
orb_colo = ['r','g','b','y','k','m','c','w']
for i, (n,c) in enumerate(zip(orb_name[0:size],orb_colo[0:size])):
#GW_spin_UP
plt.plot(data[0], data[i+1], label='QP- '+n,color=c)
plt.fill_between(data[0], 0, data[i+1], facecolor=c, alpha=0.5, interpolate=True)
#MF_spin_UP
plt.plot(data[0], data[i+size+1], label='MF- '+n, linestyle=':',color=c)
plt.fill_between(data[0], 0, data[i+size+1], facecolor=c, alpha=0.1, interpolate=True)
#GW_spin_DN
plt.plot(data[0], -data[i+2*size+1], label='_nolegend_',color=c)
plt.fill_between(data[0], 0, -data[i+2*size+1], facecolor=c, alpha=0.5, interpolate=True)
#MF_spin_DN
plt.plot(data[0], -data[i+3*size+1], label='_nolegend_', linestyle=':',color=c)
plt.fill_between(data[0], 0, -data[i+3*size+1], facecolor=c, alpha=0.1, interpolate=True)
plt.axvline(x=fermi, color='k', linestyle='--') #label='Fermi Energy'
plt.axhline(y=0,color='k')
plt.title('PDOS', fontsize=20)
plt.xlabel('Energy (eV)', fontsize=15)
plt.ylabel('Projected Density of States (electron/eV)', fontsize=15)
plt.legend()
plt.savefig("pdos.svg", dpi=900)
plt.show()
示例15: plot_calibrator_nodes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import rc [as 别名]
def plot_calibrator_nodes(nodes,
plot_submodel_calibration=True,
font_size=12,
axis_label_font_size=14,
figsize=None):
"""Plots feature calibrator(s) extracted from a TFL canned estimator.
Args:
nodes: List of calibrator nodes to be plotted.
plot_submodel_calibration: If submodel calibrators should be included in the
output plot, when more than one calibration node is provided. These are
individual calibration layers for each lattice in a lattice ensemble
constructed from `configs.CalibratedLatticeEnsembleConfig`.
font_size: Font size for values and labels on the plot.
axis_label_font_size: Font size for axis labels.
figsize: The figsize parameter passed to `pyplot.figure()`.
Returns:
Pyplot figure object containing the visualisation.
"""
with plt.style.context('seaborn-whitegrid'):
plt.rc('font', size=font_size)
plt.rc('axes', titlesize=font_size)
plt.rc('xtick', labelsize=font_size)
plt.rc('ytick', labelsize=font_size)
plt.rc('legend', fontsize=font_size)
plt.rc('axes', labelsize=axis_label_font_size)
fig = plt.figure(figsize=figsize)
axes = fig.add_subplot(1, 1, 1)
if isinstance(nodes[0], model_info.PWLCalibrationNode):
_plot_pwl_calibrator(nodes, axes, plot_submodel_calibration)
elif isinstance(nodes[0], model_info.CategoricalCalibrationNode):
_plot_categorical_calibrator(nodes, axes, plot_submodel_calibration)
else:
raise ValueError('Unknown calibrator type: {}'.format(nodes[0]))
plt.tight_layout()
return fig