本文整理汇总了Python中matplotlib.pyplot.pause方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.pause方法的具体用法?Python pyplot.pause怎么用?Python pyplot.pause使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.pause方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def update(self, xPhys, u, title=None):
"""Plot to screen"""
self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T)
stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu)
# self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu)
self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress)))
stress_rgba = self.myColorMap.to_rgba(stress)
stress_rgba[:, :, 3] = xPhys.reshape(-1, 1)
self.stress_im.set_array(np.swapaxes(
stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1))
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if title is not None:
plt.title(title)
else:
plt.xlabel("Max stress = {:.2f}".format(max(stress)[0]))
plt.pause(0.01)
示例2: render
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def render(self, current_step, net_worths, benchmarks, trades, window_size=50):
net_worth = round(net_worths[-1], 2)
initial_net_worth = round(net_worths[0], 2)
profit_percent = round((net_worth - initial_net_worth) / initial_net_worth * 100, 2)
self.fig.suptitle('Net worth: $' + str(net_worth) +
' | Profit: ' + str(profit_percent) + '%')
window_start = max(current_step - window_size, 0)
step_range = slice(window_start, current_step)
times = self.df.index.values[step_range]
self._render_net_worth(step_range, times, current_step, net_worths, benchmarks)
self._render_price(step_range, times, current_step)
self._render_volume(step_range, times)
self._render_trades(step_range, trades)
self.price_ax.set_xticklabels(times, rotation=45, horizontalalignment='right')
# Hide duplicate net worth date labels
plt.setp(self.net_worth_ax.get_xticklabels(), visible=False)
# Necessary to view frames before they are unrendered
plt.pause(0.001)
示例3: show_landmarks
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
"""Show image with pred_landmarks"""
pred_landmarks = []
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
pred_landmarks = pred_landmarks.squeeze()*4
# pred_landmarks2 = get_preds_fromhm2(heatmap)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = heatmap / np.max(heatmap)
# image = ski_transform.resize(image, (64, 64))*255
image = image.astype(np.uint8)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
heatmap *= 255
heatmap = heatmap.astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
plt.imshow(image)
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g')
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated
示例4: plot_durations
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def plot_durations(episode_durations):
plt.ion()
plt.figure(2)
plt.clf()
duration_t = torch.FloatTensor(episode_durations)
plt.title('Training')
plt.xlabel('Episodes')
plt.ylabel('Duration')
plt.plot(duration_t.numpy())
if len(duration_t) >= 100:
means = duration_t.unfold(0,100,1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.00001)
示例5: draw
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def draw(vmean, vlogstd):
from scipy import stats
plt.cla()
xlimits = [-2, 2]
ylimits = [-4, 2]
def log_prob(z):
z1, z2 = z[:, 0], z[:, 1]
return stats.norm.logpdf(z2, 0, 1.35) + \
stats.norm.logpdf(z1, 0, np.exp(z2))
plot_isocontours(ax, lambda z: np.exp(log_prob(z)), xlimits, ylimits)
def variational_contour(z):
return stats.multivariate_normal.pdf(
z, vmean, np.diag(np.exp(vlogstd)))
plot_isocontours(ax, variational_contour, xlimits, ylimits)
plt.draw()
plt.pause(1.0 / 30.0)
示例6: render
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def render(self, close=False):
if self.fig is None:
self.fig = plt.figure()
self.ax = self.fig.add_subplot(111)
plt.axis('equal')
if self.fixed_plots is None:
self.fixed_plots = self.plot_position_cost(self.ax)
[o.remove() for o in self.dynamic_plots]
x, y = self.observation
point = self.ax.plot(x, y, 'b*')
self.dynamic_plots = point
if close:
self.fixed_plots = None
plt.pause(0.001)
plt.draw()
示例7: state
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def state(self):
img = np.copy(self.world[self.sight_range:self.world.shape[0]-self.sight_range,self.sight_range:self.world.shape[0]-self.sight_range])
img[img==0] = 256
img[img==1] = 215
img[img==2] = 123
img[img==3] = 175
img[img==9] = 1
p = plt.imshow(img, interpolation='nearest', cmap='nipy_spectral')
fig = plt.gcf()
c1 = mpatches.Patch(color='red', label='cats')
c2 = mpatches.Patch(color='green', label='mice')
c3 = mpatches.Patch(color='yellow', label='cheese')
plt.legend(handles=[c1,c2,c3],loc='center left',bbox_to_anchor=(1, 0.5))
#plt.savefig("cat_mouse%i.png" % self.gif, bbox_inches='tight')
#self.gif += 1
plt.pause(0.1)
# Run algorithm
示例8: on_epoch_end
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def on_epoch_end(self, epoch, logs={}):
# Store
self.epochs += [epoch]
self.losses += [logs.get('loss')]
self.val_losses += [logs.get('val_loss')]
self.accs += [logs.get('acc')]
self.val_accs += [logs.get('val_acc')]
# Add point to plot
self.display.add(x=epoch,
y_tr=logs.get('acc'),
y_val=logs.get('val_acc'))
plt.pause(0.001)
# Save to file
dictionary = {'epochs': self.epochs,
'losses': self.losses,
'val_losses': self.val_losses,
'accs': self.accs,
'val_accs': self.val_accs}
dict_to_csv(dictionary, self.saving_path)
示例9: main
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def main():
# Generate synthetic data
x = 2 * npr.rand(N,D) - 1 # data features, an (N,D) array
x[:, 0] = 1
th_true = 10.0 * np.array([0, 1, 1])
y = np.dot(x, th_true[:, None])[:, 0]
t = npr.rand(N) > (1 / ( 1 + np.exp(y))) # data targets, an (N) array of 0s and 1s
# Obtain joint distributions over z and th
model = ff.LogisticModel(x, t, th0=th0, y0=y0)
# Set up step functions
th = np.random.randn(D) * th0
z = ff.BrightnessVars(N)
th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize)
z__stepper = ff.zStepMH(model.log_pseudo_lik, q)
plt.ion()
ax = plt.figure(figsize=(8, 6)).add_subplot(111)
while True:
th = th_stepper.step(th, z) # Markov transition step for theta
z = z__stepper.step(th ,z) # Markov transition step for z
update_fig(ax, x, y, z, th, t)
plt.draw()
plt.pause(0.05)
示例10: keypoint_detection
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def keypoint_detection(img, detector, pose_net, ctx=mx.cpu(), axes=None):
x, img = gcv.data.transforms.presets.yolo.transform_test(img, short=512, max_size=350)
x = x.as_in_context(ctx)
class_IDs, scores, bounding_boxs = detector(x)
plt.cla()
pose_input, upscale_bbox = detector_to_alpha_pose(img, class_IDs, scores, bounding_boxs,
output_shape=(128, 96), ctx=ctx)
if len(upscale_bbox) > 0:
predicted_heatmap = pose_net(pose_input)
pred_coords, confidence = heatmap_to_coord_alpha_pose(predicted_heatmap, upscale_bbox)
axes = plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores,
box_thresh=0.5, keypoint_thresh=0.2, ax=axes)
plt.draw()
plt.pause(0.001)
else:
axes = plot_image(frame, ax=axes)
plt.draw()
plt.pause(0.001)
return axes
示例11: plot_predictions
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def plot_predictions(expmap_gt, expmap_pred, fig, ax, f_title):
# Load all the data
parent, offset, rotInd, expmapInd = fk._some_variables()
nframes_pred = expmap_pred.shape[0]
# Compute 3d points for each frame
xyz_gt = np.zeros((nframes_pred, 96))
for i in range(nframes_pred):
xyz_gt[i, :] = fk.fkl(expmap_gt[i, :], parent, offset, rotInd, expmapInd).reshape([96])
xyz_pred = np.zeros((nframes_pred, 96))
for i in range(nframes_pred):
xyz_pred[i, :] = fk.fkl(expmap_pred[i, :], parent, offset, rotInd, expmapInd).reshape([96])
# === Plot and animate ===
ob = Ax3DPose(ax)
# Plot the prediction
for i in range(nframes_pred):
ob.update(xyz_gt[i, :], xyz_pred[i, :])
ax.set_title(f_title + ' frame:{:d}'.format(i + 1), loc="left")
plt.show(block=False)
fig.canvas.draw()
plt.pause(0.05)
示例12: plot_i
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def plot_i(Image, nit, chi2, fig=1, cmap='afmhot'):
"""Plot the total intensity image at each iteration
"""
plt.ion()
plt.figure(fig)
plt.pause(0.00001)
plt.clf()
plt.imshow(Image.imvec.reshape(Image.ydim,Image.xdim), cmap=plt.get_cmap(cmap), interpolation='gaussian')
xticks = ticks(Image.xdim, Image.psize/RADPERAS/1e-6)
yticks = ticks(Image.ydim, Image.psize/RADPERAS/1e-6)
plt.xticks(xticks[0], xticks[1])
plt.yticks(yticks[0], yticks[1])
plt.xlabel('Relative RA ($\mu$as)')
plt.ylabel('Relative Dec ($\mu$as)')
plt.title("step: %i $\chi^2$: %f " % (nit, chi2), fontsize=20)
示例13: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batchSeriesIdx in range(5):
oneHotOutputSeries = np.array(predictions_series)[:, batchSeriesIdx, :]
singleOutputSeries = np.array([(1 if out[0] < 0.5 else 0) for out in oneHotOutputSeries])
plt.subplot(2, 3, batchSeriesIdx + 2)
plt.cla()
plt.axis([0, backpropagationLength, 0, 2])
left_offset = range(backpropagationLength)
plt.bar(left_offset, batchX[batchSeriesIdx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batchSeriesIdx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, singleOutputSeries * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
开发者ID:PacktPublishing,项目名称:Neural-Network-Programming-with-TensorFlow,代码行数:21,代码来源:lstm_with_tensorflow.py
示例14: visualize_polar
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def visualize_polar(state):
plt.clf()
sonar = state[0][-1:]
readings = state[0][:-1]
r = []
t = []
for i, s in enumerate(readings):
r.append(math.radians(i * 6))
t.append(s)
ax = plt.subplot(111, polar=True)
ax.set_theta_zero_location('W')
ax.set_theta_direction(-1)
ax.set_ylim(bottom=0, top=105)
plt.plot(r, t)
plt.scatter(math.radians(90), sonar, s=50)
plt.draw()
plt.pause(0.1)
示例15: update_plots
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import pause [as 别名]
def update_plots(itr, test_model, S, ln, im_clus, im_net):
K = test_model.K
C = test_model.C
T = S.shape[0]
plt.figure(2)
ln.set_data(np.arange(T), test_model.compute_rate()[:,0])
plt.title("\lambda_{%d}. Iteration %d" % (0, itr))
plt.pause(0.001)
plt.figure(3)
KC = np.zeros((K,C))
KC[np.arange(K), test_model.network.c] = 1.0
im_clus.set_data(KC)
plt.title("KxC: Iteration %d" % itr)
plt.pause(0.001)
plt.figure(4)
plt.title("W: Iteration %d" % itr)
im_net.set_data(test_model.weight_model.W_effective)
plt.pause(0.001)