本文整理汇总了Python中matplotlib.pyplot.minorticks_on方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.minorticks_on方法的具体用法?Python pyplot.minorticks_on怎么用?Python pyplot.minorticks_on使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.minorticks_on方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_logs
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def plot_logs(logs, score_name="top1", y_max=1, prefix=None, score_type=None):
"""
Args:
score_type (str): label for current curve, [valid|train|aggreg]
"""
# Plot all losses
scores = logs[score_name]
if score_type is None:
label = prefix + ""
else:
label = prefix + "_" + score_type.lower()
plt.plot(scores, label=label)
plt.title(score_name)
if score_name == "top1" or score_name == "top1_action":
# Set maximum for y axis
plt.minorticks_on()
x1, x2, _, _ = plt.axis()
axes = plt.gca()
axes.yaxis.set_minor_locator(MultipleLocator(0.02))
plt.axis((x1, x2, 0, y_max))
plt.grid(b=True, which="minor", color="k", alpha=0.2, linestyle="-")
plt.grid(b=True, which="major", color="k", linestyle="-")
示例2: plot_autocorrelation
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def plot_autocorrelation(chain, interval=2, max_lag=100, radius=1.1):
if max_lag is None:
max_lag = chain.size()
autocorrelations = chain.autocorrelations()[:max_lag]
lags = np.arange(0, max_lag, interval)
autocorrelations = autocorrelations[lags]
plt.ylim([-radius, radius])
center = .5
for index, lag in enumerate(lags):
autocorrelation = autocorrelations[index]
plt.axvline(lag, center, center + autocorrelation / 2 / radius, c="black")
plt.xlabel("Lag")
plt.ylabel("Autocorrelation")
plt.minorticks_on()
plt.axhline(0, linestyle="--", c="black", alpha=.75, lw=2)
make_square(plt.gca())
figure = plt.gcf()
return figure
示例3: plotSeries
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def plotSeries(key, ymin=None, ymax=None):
"""
Plot the chosen dataset key for each scanned data file.
@param key: data set key to use
@type key: L{str}
@param ymin: minimum value for y-axis or L{None} for default
@type ymin: L{int} or L{float}
@param ymax: maximum value for y-axis or L{None} for default
@type ymax: L{int} or L{float}
"""
titles = []
for title, data in sorted(dataset.items(), key=lambda x: x[0]):
titles.append(title)
x, y = zip(*[(k / 3600.0, v[key]) for k, v in sorted(data.items(), key=lambda x: x[0]) if key in v])
plt.plot(x, y)
plt.xlabel("Hours")
plt.ylabel(key)
plt.xlim(0, 24)
if ymin is not None:
plt.ylim(ymin=ymin)
if ymax is not None:
plt.ylim(ymax=ymax)
plt.xticks(
(1, 4, 7, 10, 13, 16, 19, 22,),
(18, 21, 0, 3, 6, 9, 12, 15,),
)
plt.minorticks_on()
plt.gca().xaxis.set_minor_locator(AutoMinorLocator(n=3))
plt.grid(True, "major", "x", alpha=0.5, linewidth=0.5)
plt.grid(True, "minor", "x", alpha=0.5, linewidth=0.5)
plt.legend(titles, 'upper left', shadow=True, fancybox=True)
plt.show()
示例4: show
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def show(dsName, subType):
wName = '../Weights/' + branchName() + '_' + dsName + '_' + subType
cnn = 1
if cnn == 1:
mc = ModelContainer_CNN(Model_CNN_0(dsName))
mc.load_weights(wName + '_best', train=False)
train_loss, val_loss = mc.getLossHistory()
else:
mc = GuessNet()
checkPoint = torch.load(wName + '.pt')
mc.load_state_dict(checkPoint['model_state_dict'])
mc.load_state_dict(checkPoint['optimizer_state_dict'])
train_loss = checkPoint['train_loss']
val_loss = checkPoint['val_loss']
plt.figure()
train_line, =plt.plot(train_loss, 'r-o')
val_line, =plt.plot(val_loss, 'b-o')
plt.legend((train_line, val_line),('Train Loss', 'Validation Loss'))
# if dsName.lower() == 'airsim':
# plt.title('Mahalanobis Distance ' + dsName + ' Pincushion Distortion')
# else:
# plt.title('Mahalanobis Distance ' + dsName)
plt.grid(b=True, which='major', color='#666666', linestyle='-')
plt.minorticks_on()
plt.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2)
plt.ylim(bottom=0, top=10)
plt.ylabel('Mahalanobis Distance, m', fontsize=20)
plt.xlabel('Epochs', fontsize=20)
plt.savefig('trainResult.png')
plt.show()
示例5: plot_trace
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def plot_trace(chain, parameter_index=None):
nrows = chain.dimensionality()
figure, rows = plt.subplots(nrows, 2, sharey=False, sharex=False, figsize=(2 * 7, 2))
num_samples = chain.size()
def display(ax_trace, ax_density, theta_index=1):
# Trace
ax_trace.minorticks_on()
ax_trace.plot(range(num_samples), chain.samples.numpy(), color="black", lw=2)
ax_trace.set_xlim([0, num_samples])
ax_trace.set_xticks([])
ax_trace.set_ylabel(r"$\theta_" + str(theta_index) + "$")
limits = ax_trace.get_ylim()
# Density
ax_density.minorticks_on()
ax_density.hist(chain.samples.numpy(), bins=50, lw=2, color="black", histtype="step", density=True)
ax_density.yaxis.tick_right()
ax_density.yaxis.set_label_position("right")
ax_density.set_ylabel("Probability mass function")
ax_density.set_xlabel(r"$\theta_" + str(theta_index) + "$")
ax_density.set_xlim(limits)
# Aspects
make_square(ax_density)
ax_trace.set_aspect("auto")
ax_trace.set_position([0, 0, .7, 1])
ax_density.set_position([.28, 0, 1, 1])
if nrows > 1:
for index, ax_trace, ax_density in enumerate(rows):
display(ax_trace, ax_density)
else:
ax_trace, ax_density = rows
display(ax_trace, ax_density)
return figure
示例6: standard_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def standard_plot(
SCADA_good, SCADA_fault, title='Power Curve Plot',
temp=False):
# plot it all
plt.figure(figsize=(40, 20))
# up/down plot
# good and bad points
if temp is True:
ava_good_temp = (SCADA_good['CS101__Nacelle_ambient_temp_1'] +
SCADA_good['CS101__Nacelle_ambient_temp_2']) / 2
ava_fault_temp = (SCADA_fault['CS101__Nacelle_ambient_temp_1'] +
SCADA_fault['CS101__Nacelle_ambient_temp_2']) / 2
good_colour = ava_good_temp
bad_colour = ava_fault_temp
else:
good_colour = 'b'
bad_colour = 'r'
good_plt = plt.scatter(
SCADA_good['WEC_ava_windspeed'], SCADA_good['WEC_ava_Power'],
c=good_colour, cmap=plt.cm.Blues, linewidth='0', s=50)
fault_plt = plt.scatter(
SCADA_fault['WEC_ava_windspeed'], SCADA_fault['WEC_ava_Power'],
c=bad_colour, cmap=plt.cm.Reds, linewidth='0', s=50)
# put a grid on it
plt.grid(b=True, which='major', color='b', linestyle='-')
plt.minorticks_on()
plt.grid(b=True, which='minor', color='r', linestyle='--')
# legend, title, colorbar
plt.legend(loc='upper left')
plt.title(title)
if temp:
plt.colorbar(good_plt)
plt.show()
# --------------------SVM Functions-------------------------------------
示例7: plot_charts
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def plot_charts(modelLoc):
fileObj = open("./" + modelLoc + "/log.txt", 'r')
epoch = []
trainLoss = []
trainScore = []
valLoss = []
valScore = []
# Read in File
for line in fileObj:
words = line.split()
if words[0] == 'epoch':
epoch.append(int(words[1][:-1]))
elif words[0] == 'train_loss:':
trainLoss.append(float(words[1][:-1]))
trainScore.append(float(words[3]))
elif words[0] == 'eval':
valLoss.append(float(words[2][:-1]))
valScore.append(float(words[4]))
fileObj.close()
minValLoss = min(valLoss)
epochValLoss = np.argmin(valLoss)
maxValScore = max(valScore)
epochValScore = np.argmax(valScore)
# Plot Loss and Score
plt.figure()
plt.suptitle(modelLoc)
# train/val loss
plt.subplot(211)
plt.plot(epoch, trainLoss, label='Training')
plt.plot(epoch, valLoss, label='Validation')
plt.plot(epochValLoss, minValLoss, marker='x', markersize=3, color="black")
plt.xlabel('loss')
plt.ylabel('score')
plt.title('Training and Validation Loss')
plt.legend()
plt.minorticks_on()
plt.grid(True, which='both')
# train/val score
plt.subplot(212)
plt.plot(epoch, trainScore, label='Training')
plt.plot(epoch, valScore, label='Validation')
plt.plot(epochValScore, maxValScore, marker='x', markersize=3, color="black")
plt.xlabel('epochs')
plt.ylabel('score')
plt.title('Training and Validation Score')
plt.legend()
plt.minorticks_on()
plt.grid(True, which='both')
plt.subplots_adjust(hspace=0.5)
#plt.show()
plt.savefig("./" + modelLoc + ".png")
示例8: frame_average_radprofile
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import minorticks_on [as 别名]
def frame_average_radprofile(frame, sep=1, init_rad=None, plot=True):
""" Calculates the average radial profile of an image.
Parameters
----------
frame : numpy ndarray
Input image or 2d array.
sep : int, optional
The average radial profile is recorded every ``sep`` pixels.
plot : bool, optional
If True the profile is plotted.
Returns
-------
df : dataframe
Pandas dataframe with the radial profile and distances.
Notes
-----
https://stackoverflow.com/questions/21242011/most-efficient-way-to-calculate-radial-profile
https://stackoverflow.com/questions/48842320/what-is-the-best-way-to-calculate-radial-average-of-the-image-with-python
https://github.com/keflavich/image_tools/blob/master/image_tools/radialprofile.py
"""
check_array(frame, dim=2)
cy, cx = frame_center(frame)
if init_rad is None:
init_rad = 1
x, y = np.indices((frame.shape))
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
r = r.astype(int)
tbin = np.bincount(r.ravel(), frame.ravel())
nr = np.bincount(r.ravel())
radprofile = tbin / nr
radists = np.arange(init_rad + 1, int(cy), sep) - 1
radprofile_radists = radprofile[radists]
nr_radists = nr[radists]
df = pd.DataFrame({'rad': radists, 'radprof': radprofile_radists,
'npx': nr_radists})
if plot:
plt.figure(figsize=vip_figsize)
plt.plot(radists, radprofile_radists, '.-', alpha=0.6)
plt.grid(which='both', alpha=0.4)
plt.xlabel('Pixels')
plt.ylabel('Counts')
plt.minorticks_on()
plt.xlim(0)
return df