本文整理汇总了Python中matplotlib.pyplot.matshow方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.matshow方法的具体用法?Python pyplot.matshow怎么用?Python pyplot.matshow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.matshow方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: pearson_filter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def pearson_filter(projectPath, featuresDf, del_corr_status, del_corr_threshold, del_corr_plot_status):
print('Reducing features. Correlation threshold: ' + str(del_corr_threshold))
col_corr = set()
corr_matrix = featuresDf.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if (corr_matrix.iloc[i, j] >= del_corr_threshold) and (corr_matrix.columns[j] not in col_corr):
colname = corr_matrix.columns[i]
col_corr.add(colname)
if colname in featuresDf.columns:
del featuresDf[colname]
if del_corr_plot_status == 'yes':
print('Creating feature correlation heatmap...')
dateTime = datetime.now().strftime('%Y%m%d%H%M%S')
plt.matshow(featuresDf.corr())
plt.tight_layout()
plt.savefig(os.path.join(projectPath, 'logs', 'Feature_correlations_' + dateTime + '.png'), dpi=300)
plt.close('all')
print('Feature correlation heatmap .png saved in project_folder/logs directory')
return featuresDf
示例2: plotresult
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plotresult(org_vec,noisy_vec,out_vec):
plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Original Image")
plt.colorbar()
plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Input Image")
plt.colorbar()
outimg = np.reshape(out_vec, (28, 28))
plt.matshow(outimg, cmap=plt.get_cmap('gray'))
plt.title("Reconstructed Image")
plt.colorbar()
plt.show()
# NETOWRK PARAMETERS
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow-Second-Edition,代码行数:18,代码来源:denoising_autoencoder.py
示例3: plotresult
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plotresult(org_vec,noisy_vec,out_vec):
plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Original Image")
plt.colorbar()
plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Input Image")
plt.colorbar()
outimg = np.reshape(out_vec, (28, 28))
plt.matshow(outimg, cmap=plt.get_cmap('gray'))
plt.title("Reconstructed Image")
plt.colorbar()
plt.show()
# NETOWORK PARAMETERS
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow-Second-Edition,代码行数:18,代码来源:deconvolutional_autoencoder.py
示例4: plot_matrix_and_get_image
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plot_matrix_and_get_image(plot_data, fig_height=8, fig_width=12, axis_off=False, colormap="jet"):
fig = plt.figure()
fig.set_figheight(fig_height)
fig.set_figwidth(fig_width)
plt.matshow(plot_data, fig.number)
if fig_height < fig_width:
plt.colorbar(orientation="horizontal")
else:
plt.colorbar(orientation="vertical")
plt.set_cmap(colormap)
if axis_off:
plt.axis('off')
img = fig_to_img(fig)
plt.close(fig)
return img
示例5: plot_correlation_image
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plot_correlation_image(single_one_shot_training_database, epoch_idx=-1):
correlation_matrix = np.zeros((3, 5))
for idx_cell, num_cells in enumerate([3, 6, 9]):
for idx_ch, num_channels in enumerate([2, 4, 8, 16, 36]):
config = single_one_shot_training_database.query(
{'unrolled': False, 'cutout': False, 'search_space': '3', 'epochs': 50, 'init_channels': num_channels,
'weight_decay': 0.0003, 'warm_start_epochs': 0, 'learning_rate': 0.025, 'layers': num_cells})
if len(config) > 0:
correlation = extract_correlation_per_epoch(config)
correlation_matrix[idx_cell, idx_ch] = 1 - correlation[epoch_idx]
plt.figure()
plt.matshow(correlation_matrix)
plt.xticks(np.arange(5), (2, 4, 8, 16, 36))
plt.yticks(np.arange(3), (3, 6, 9))
plt.colorbar()
plt.savefig('test_correlation.png')
plt.close()
return correlation_matrix
示例6: MyPlot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def MyPlot(cwtmatr):
''' 绘图 '''
print(type(cwtmatr))
print(len(cwtmatr))
print(len(cwtmatr[0]))
# plt.plot(cwtmatr[1])
# plt.plot(cwtmatr[10])
# plt.plot(cwtmatr[100])
plt.plot(cwtmatr[1200])
plt.plot(cwtmatr[1210])
plt.plot(cwtmatr[1300])
plt.plot(cwtmatr[1400])
plt.plot(cwtmatr[1500])
# plt.plot(cwtmatr[1800])
# plt.plot(cwtmatr[1900])
# plt.plot(cwtmatr[2500])
# plt.matshow(cwtmatr)
plt.show()
示例7: plot_attention
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plot_attention(tokens1, tokens2, attention):
"""
Print a colormap showing attention values from tokens 1 to
tokens 2.
"""
len1 = len(tokens1)
len2 = len(tokens2)
extent = [0, len2, 0, len1]
pl.matshow(attention, extent=extent, aspect='auto')
ticks1 = np.arange(len1) + 0.5
ticks2 = np.arange(len2) + 0.5
pl.xticks(ticks2, tokens2, rotation=45)
pl.yticks(ticks1, reversed(tokens1))
ax = pl.gca()
ax.xaxis.set_ticks_position('bottom')
pl.colorbar()
pl.title('Alignments')
pl.show(block=False)
示例8: render
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def render(self, plt_delay=1.0):
plt.matshow(self.model_state[0].T, cmap=plt.get_cmap('Greys'), fignum=1)
for i in range(self.pursuer_layer.n_agents()):
x, y = self.pursuer_layer.get_position(i)
plt.plot(x, y, "r*", markersize=12)
if self.train_pursuit:
ax = plt.gca()
ofst = self.obs_range / 2.0
ax.add_patch(
Rectangle((x - ofst, y - ofst), self.obs_range, self.obs_range, alpha=0.5,
facecolor="#FF9848"))
for i in range(self.evader_layer.n_agents()):
x, y = self.evader_layer.get_position(i)
plt.plot(x, y, "b*", markersize=12)
if not self.train_pursuit:
ax = plt.gca()
ofst = self.obs_range / 2.0
ax.add_patch(
Rectangle((x - ofst, y - ofst), self.obs_range, self.obs_range, alpha=0.5,
facecolor="#009ACD"))
plt.pause(plt_delay)
plt.clf()
示例9: draw_confusion_matrix
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def draw_confusion_matrix(y_test, y_pred):
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Show confusion matrix in a separate window
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
####################10 CV FALSE POSITIVE FLASE NEGATIVe#################################################
示例10: plotresult
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plotresult(org_vec,noisy_vec,out_vec):
plt.matshow(np.reshape(org_vec, (28, 28)),\
cmap=plt.get_cmap('gray'))
plt.title("Original Image")
plt.colorbar()
plt.matshow(np.reshape(noisy_vec, (28, 28)),\
cmap=plt.get_cmap('gray'))
plt.title("Input Image")
plt.colorbar()
outimg = np.reshape(out_vec, (28, 28))
plt.matshow(outimg, cmap=plt.get_cmap('gray'))
plt.title("Reconstructed Image")
plt.colorbar()
plt.show()
# NETOWORK PARAMETERS
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow,代码行数:20,代码来源:deconvolutional_autoencoder_1.py
示例11: plotresult
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plotresult(org_vec,noisy_vec,out_vec):
plt.matshow(np.reshape(org_vec, (28, 28)),\
cmap=plt.get_cmap('gray'))
plt.title("Original Image")
plt.colorbar()
plt.matshow(np.reshape(noisy_vec, (28, 28)),\
cmap=plt.get_cmap('gray'))
plt.title("Input Image")
plt.colorbar()
outimg = np.reshape(out_vec, (28, 28))
plt.matshow(outimg, cmap=plt.get_cmap('gray'))
plt.title("Reconstructed Image")
plt.colorbar()
plt.show()
# NETOWRK PARAMETERS
示例12: confusion_matrix_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def confusion_matrix_plot(
confusion_matrix,
labels=None,
output_feature_name=None,
filename=None
):
mpl.rcParams.update({'figure.autolayout': True})
fig, ax = plt.subplots()
ax.invert_yaxis()
ax.xaxis.tick_top()
ax.xaxis.set_label_position('top')
cax = ax.matshow(confusion_matrix, cmap='viridis')
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.set_xticklabels([''] + labels, rotation=45, ha='left')
ax.set_yticklabels([''] + labels)
ax.grid(False)
ax.tick_params(axis='both', which='both', length=0)
fig.colorbar(cax, ax=ax, extend='max')
ax.set_xlabel('Predicted {}'.format(output_feature_name))
ax.set_ylabel('Actual {}'.format(output_feature_name))
plt.tight_layout()
ludwig.contrib.contrib_command("visualize_figure", plt.gcf())
if filename:
plt.savefig(filename)
else:
plt.show()
示例13: plot_matrix
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plot_matrix(
matrix,
cmap='hot',
filename=None
):
plt.matshow(matrix, cmap=cmap)
ludwig.contrib.contrib_command("visualize_figure", plt.gcf())
if filename:
plt.savefig(filename)
else:
plt.show()
示例14: plot_confusion_matrix
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def plot_confusion_matrix(cls_pred, data):
# cls_pred is an array of the predicted class-number for
# all images in the test-set.
# Get the true classifications for the test-set.
cls_true = data.valid.cls
# Get the confusion matrix using sklearn.
cm = confusion_matrix(y_true=cls_true,
y_pred=cls_pred)
# Print the confusion matrix as text.
print(cm)
# Plot the confusion matrix as an image.
plt.matshow(cm)
# Make various adjustments to the plot.
plt.colorbar()
tick_marks = np.arange(num_classes)
plt.xticks(tick_marks, range(num_classes))
plt.yticks(tick_marks, range(num_classes))
plt.xlabel('Predicted')
plt.ylabel('True')
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()
示例15: show_alignment
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import matshow [as 别名]
def show_alignment(weights, transcription,
bos_symbol=False, energies=None,
**kwargs):
f = pyplot.figure(figsize=(15, 0.20 * len(transcription)))
ax = f.gca()
ax.matshow(weights, aspect='auto', **kwargs)
ax.set_yticks((1 if bos_symbol else 0) + numpy.arange(len(transcription)))
ax.set_yticklabels(transcription)
pyplot.show()
if energies is not None:
pyplot.matshow(energies, **kwargs)
pyplot.colorbar()
pyplot.show()