本文整理汇总了Python中matplotlib.pyplot.ion方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.ion方法的具体用法?Python pyplot.ion怎么用?Python pyplot.ion使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.ion方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Epochs
示例2: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
示例3: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例4: plotNNFilterOverlay
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
示例5: plot_durations
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plot_durations(episode_durations):
plt.ion()
plt.figure(2)
plt.clf()
duration_t = torch.FloatTensor(episode_durations)
plt.title('Training')
plt.xlabel('Episodes')
plt.ylabel('Duration')
plt.plot(duration_t.numpy())
if len(duration_t) >= 100:
means = duration_t.unfold(0,100,1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.00001)
示例6: main
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def main():
# Generate synthetic data
x = 2 * npr.rand(N,D) - 1 # data features, an (N,D) array
x[:, 0] = 1
th_true = 10.0 * np.array([0, 1, 1])
y = np.dot(x, th_true[:, None])[:, 0]
t = npr.rand(N) > (1 / ( 1 + np.exp(y))) # data targets, an (N) array of 0s and 1s
# Obtain joint distributions over z and th
model = ff.LogisticModel(x, t, th0=th0, y0=y0)
# Set up step functions
th = np.random.randn(D) * th0
z = ff.BrightnessVars(N)
th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize)
z__stepper = ff.zStepMH(model.log_pseudo_lik, q)
plt.ion()
ax = plt.figure(figsize=(8, 6)).add_subplot(111)
while True:
th = th_stepper.step(th, z) # Markov transition step for theta
z = z__stepper.step(th ,z) # Markov transition step for z
update_fig(ax, x, y, z, th, t)
plt.draw()
plt.pause(0.05)
示例7: plot_i
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plot_i(Image, nit, chi2, fig=1, cmap='afmhot'):
"""Plot the total intensity image at each iteration
"""
plt.ion()
plt.figure(fig)
plt.pause(0.00001)
plt.clf()
plt.imshow(Image.imvec.reshape(Image.ydim,Image.xdim), cmap=plt.get_cmap(cmap), interpolation='gaussian')
xticks = ticks(Image.xdim, Image.psize/RADPERAS/1e-6)
yticks = ticks(Image.ydim, Image.psize/RADPERAS/1e-6)
plt.xticks(xticks[0], xticks[1])
plt.yticks(yticks[0], yticks[1])
plt.xlabel('Relative RA ($\mu$as)')
plt.ylabel('Relative Dec ($\mu$as)')
plt.title("step: %i $\chi^2$: %f " % (nit, chi2), fontsize=20)
示例8: test_shapes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def test_shapes():
kwargs = {'ls':'--', 'lw':0.5, 'zorder':1, 'facecolor':'r', 'edgecolor': 'g'}
plt.ion()
ax = plt.subplot(111)
shape_list = ['circle', 'golden', 'triangle', 'diamond', 'empty', 'dot', 'cross', 'measure', 'plus']
for i, shape in enumerate(shape_list):
func = eval('shapes.%s'%shape)
for j in range(5):
size_, angle_, roundness_, kwargs_ = 0.3, 0, 0, dict(kwargs)
if j==1:
size_ = 0.15
if j==2:
angle_ = np.pi/4.
if j==3:
angle_ = np.pi/4.
roundness_ = 0.05
if j==4:
kwargs_['facecolor']='k'
patches = func((i,-j), size_, angle_, roundness_, **kwargs_)
for patch in patches:
ax.add_patch(patch)
plt.axis('equal')
plt.axis('off')
pdb.set_trace()
示例9: sample_from_network_hawkes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def sample_from_network_hawkes(C, K, T, dt, B):
# Create a true model
p = 0.8 * np.eye(C)
v = 10.0 * np.eye(C) + 20.0 * (1-np.eye(C))
c = (0.0 * (np.arange(K) < 10) + 1.0 * (np.arange(K) >= 10)).astype(np.int)
true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(C=C, K=K, dt=dt, B=B, c=c, p=p, v=v)
# Plot the true network
plt.ion()
plot_network(true_model.weight_model.A,
true_model.weight_model.W,
vmax=0.5)
# Sample from the true model
S,R = true_model.generate(T=T)
# Return the spike count matrix
return S, R, true_model
示例10: prepare_plots
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def prepare_plots():
fig, axarr = plt.subplots(2, sharex=True)
fig.canvas.set_window_title('EVOLUTIONARY PROGRESS')
fig.subplots_adjust(hspace = 0.5)
axarr[0].set_title('error', fontsize=14)
axarr[1].set_title('mean size', fontsize=14)
plt.xlabel('generation', fontsize=18)
plt.ion() # interactive mode for plot
axarr[0].set_xlim(0, GENERATIONS)
axarr[0].set_ylim(0, 1) # fitness range
xdata = []
ydata = [ [], [] ]
line = [None, None]
line[0], = axarr[0].plot(xdata, ydata[0], 'b-') # 'b-' = blue line
line[1], = axarr[1].plot(xdata, ydata[1], 'r-') # 'r-' = red line
return axarr, line, xdata, ydata
示例11: plot2dRepresentation
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plot2dRepresentation(states, rewards, images_path, name="Learned State Representation",
add_colorbar=True):
plt.ion()
fig = plt.figure(name)
plt.clf()
ax = fig.add_subplot(111)
im = ax.scatter(states[:, 0], states[:, 1], s=7, c=np.clip(rewards, -1, 1), cmap='coolwarm', linewidths=0.1)
ax.set_xlabel('State dimension 1')
ax.set_ylabel('State dimension 2')
ax.set_title(fill(name, TITLE_MAX_LENGTH))
fig.tight_layout()
if add_colorbar:
fig.colorbar(im, label='Reward')
createInteractivePlot(fig, ax, states, rewards, images_path)
plt.show()
示例12: plot3dRepresentation
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def plot3dRepresentation(states, rewards, images_path, name="Learned State Representation",
add_colorbar=True, multi_view=False):
plt.ion()
fig = plt.figure(name)
plt.clf()
ax = fig.add_subplot(111, projection='3d')
im = ax.scatter(states[:, 0], states[:, 1], states[:, 2],
s=7, c=np.clip(rewards, -1, 1), cmap='coolwarm', linewidths=0.1)
ax.set_xlabel('State dimension 1')
ax.set_ylabel('State dimension 2')
ax.set_zlabel('State dimension 3')
ax.set_title(fill(name, TITLE_MAX_LENGTH))
fig.tight_layout()
if add_colorbar:
fig.colorbar(im, label='Reward')
if multi_view:
createInteractivePlot(fig, ax, states, rewards, images_path, view=1)
createInteractivePlot(plt.figure(name), ax, states, rewards, images_path, view=2)
else:
createInteractivePlot(fig, ax, states, rewards, images_path)
plt.show()
示例13: on_train_begin
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def on_train_begin(self, logs={}):
sns.set_style("whitegrid")
sns.set_style("whitegrid", {"grid.linewidth": 0.5,
"lines.linewidth": 0.5,
"axes.linewidth": 0.5})
flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e",
"#2ecc71"]
sns.set_palette(sns.color_palette(flatui))
# flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
# sns.set_palette(sns.color_palette("Set2", 10))
plt.ion() # set plot to animated
width = self.width * (1 + len(self.get_metrics(logs)))
height = self.height
self.fig = plt.figure(figsize=(width, height))
# move it to the upper left corner
move_figure(self.fig, 25, 25)
示例14: live_plotter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def live_plotter(x_vec,y1_data,line1,identifier='',pause_time=0.1):
if line1==[]:
# this is the call to matplotlib that allows dynamic plotting
plt.ion()
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
# create a variable for the line so we can later update it
line1, = ax.plot(x_vec,y1_data,'-o',alpha=0.8)
#update plot label/title
plt.ylabel('Y Label')
plt.title('Title: {}'.format(identifier))
plt.show()
# after the figure, axis, and line are created, we only need to update the y-data
line1.set_ydata(y1_data)
# adjust limits if new data goes beyond bounds
if np.min(y1_data)<=line1.axes.get_ylim()[0] or np.max(y1_data)>=line1.axes.get_ylim()[1]:
plt.ylim([np.min(y1_data)-np.std(y1_data),np.max(y1_data)+np.std(y1_data)])
# this pauses the data so the figure/axis can catch up - the amount of pause can be altered above
plt.pause(pause_time)
# return line so we can update it again in the next iteration
return line1
# the function below is for updating both x and y values (great for updating dates on the x-axis)
示例15: live_plotter_xy
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import ion [as 别名]
def live_plotter_xy(x_vec,y1_data,line1,identifier='',pause_time=0.01):
if line1==[]:
plt.ion()
fig = plt.figure(figsize=(13,6))
ax = fig.add_subplot(111)
line1, = ax.plot(x_vec,y1_data,'r-o',alpha=0.8)
plt.ylabel('Y Label')
plt.title('Title: {}'.format(identifier))
plt.show()
line1.set_data(x_vec,y1_data)
plt.xlim(np.min(x_vec),np.max(x_vec))
if np.min(y1_data)<=line1.axes.get_ylim()[0] or np.max(y1_data)>=line1.axes.get_ylim()[1]:
plt.ylim([np.min(y1_data)-np.std(y1_data),np.max(y1_data)+np.std(y1_data)])
plt.pause(pause_time)
return line1