当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.hist2d方法代码示例

本文整理汇总了Python中matplotlib.pyplot.hist2d方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.hist2d方法的具体用法?Python pyplot.hist2d怎么用?Python pyplot.hist2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.hist2d方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_synthetic_SGLD

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def run_synthetic_SGLD():
    theta1 = 0
    theta2 = 1
    sigma1 = numpy.sqrt(10)
    sigma2 = 1
    sigmax = numpy.sqrt(2)
    X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100)
    minibatch_size = 1
    total_iter_num = 1000000
    lr_scheduler = SGLDScheduler(begin_rate=0.01, end_rate=0.0001, total_iter_num=total_iter_num,
                                 factor=0.55)
    optimizer = mx.optimizer.create('sgld',
                                    learning_rate=None,
                                    rescale_grad=1.0,
                                    lr_scheduler=lr_scheduler,
                                    wd=0)
    updater = mx.optimizer.get_updater(optimizer)
    theta = mx.random.normal(0, 1, (2,), mx.cpu())
    grad = nd.empty((2,), mx.cpu())
    samples = numpy.zeros((2, total_iter_num))
    start = time.time()
    for i in xrange(total_iter_num):
        if (i + 1) % 100000 == 0:
            end = time.time()
            print("Iter:%d, Time spent: %f" % (i + 1, end - start))
            start = time.time()
        ind = numpy.random.randint(0, X.shape[0])
        synthetic_grad(X[ind], theta, sigma1, sigma2, sigmax, rescale_grad=
        X.shape[0] / float(minibatch_size), grad=grad)
        updater('theta', grad, theta)
        samples[:, i] = theta.asnumpy()
    plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet)
    plt.colorbar()
    plt.show() 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:36,代码来源:bdk_demo.py

示例2: plot_2dhistogram

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def plot_2dhistogram(x, y, num_bins, title, save_path, ax_lims=None):
    fig, ax = plt.subplots(1)
    ax.set_title(title)
    plt.hist2d(x, y, bins=num_bins)
    if ax_lims is not None:
        ax.set_xlim(ax_lims[0])
        ax.set_ylim(ax_lims[1])
    ax.set_aspect('equal')    
    plt.savefig(save_path, bbox_inches='tight')
    plt.close() 
开发者ID:KamyarGh,项目名称:rl_swiss,代码行数:12,代码来源:vistools.py

示例3: prep_2D_hist

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def prep_2D_hist(ima, gra, discard_zeros=True):
    """Prepare 2D histogram related variables.

    Parameters
    ----------
    ima : np.ndarray
        First image, which is often the intensity image (eg. T1w).
    gra : np.ndarray
        Second image, which is often the gradient magnitude image
        derived from the first image.

    Returns
    -------
    counts : integer
    volHistH : TODO
    d_min : float
        Minimum of the first image.
    d_max : float
        Maximum of the first image.
    nr_bins : integer
        Number of one dimensional bins (not the pixels).
    bin_edges : TODO

    Notes
    -----
    This function is modularized to be called from the terminal.

    """
    if discard_zeros:
        gra = gra[~np.isclose(ima, 0)]
        ima = ima[~np.isclose(ima, 0)]
    d_min, d_max = np.round(np.nanpercentile(ima, [0, 100]))
    nr_bins = int(d_max - d_min)
    bin_edges = np.arange(d_min, d_max+1)
    counts, _, _, volHistH = plt.hist2d(ima, gra, bins=bin_edges, cmap='Greys')
    return counts, volHistH, d_min, d_max, nr_bins, bin_edges 
开发者ID:ofgulban,项目名称:segmentator,代码行数:38,代码来源:utils.py

示例4: plot_density_observed_vs_predicted

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def plot_density_observed_vs_predicted(Ytest, Ypred, pred_name=None, figprefix=None):
    """Functionality to plot a 2D histogram of the distribution of observed (ground truth)
       values vs. predicted values. The plot generated is stored in a png file.

    Parameters
    ----------
    Ytest : numpy array
      Array with (true) observed values
    Ypred : numpy array
      Array with predicted values.
    pred_name : string
      Name of data colum or quantity predicted (e.g. growth, AUC, etc.)
    figprefix : string
      String to prefix the filename to store the figure generated.
      A '_density_predictions.png' string will be appended to the
      figprefix given.
    """

    xbins = 51

    fig = plt.figure(figsize=(24,18)) # (30,16)
    ax = plt.gca()
    plt.rc('xtick', labelsize=16)    # fontsize of the tick labels
    ax.plot([Ytest.min(), Ytest.max()], [Ytest.min(), Ytest.max()], 'r--', lw=4.)
    plt.hist2d(Ytest, Ypred, bins=xbins, norm=LogNorm())
    cb = plt.colorbar()
    ax.set_xlabel('Observed ' + pred_name, fontsize=38, labelpad=15.)
    ax.set_ylabel('Mean ' + pred_name + ' Predicted', fontsize=38, labelpad=15.)
    ax.axis([Ytest.min()*0.98, Ytest.max()*1.02, Ytest.min()*0.98, Ytest.max()*1.02])
    plt.setp(ax.get_xticklabels(), fontsize=32)
    plt.setp(ax.get_yticklabels(), fontsize=32)
    cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=28)
    plt.grid(True)
    plt.savefig(figprefix + '_density_predictions.png')
    plt.close()
    print('Generated plot: ', figprefix + '_density_predictions.png') 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:38,代码来源:viz_utils.py

示例5: plot_2d_density_sigma_vs_error

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def plot_2d_density_sigma_vs_error(sigma, yerror, method=None, figprefix=None):
    """Functionality to plot a 2D histogram of the distribution of 
       the standard deviations computed for the predictions vs. the
       computed errors (i.e. values of observed - predicted).
       The plot generated is stored in a png file.

    Parameters
    ----------
    sigma : numpy array
      Array with standard deviations computed.
    yerror : numpy array
      Array with errors computed (observed - predicted).
    method : string
      Method used to comput the standard deviations (i.e. dropout, 
      heteroscedastic, etc.).
    figprefix : string
      String to prefix the filename to store the figure generated.
      A '_density_sigma_error.png' string will be appended to the 
      figprefix given.
    """
    
    xbins = 51
    ybins = 31

    fig = plt.figure(figsize=(24,12)) # (30,16)
    ax = plt.gca()
    plt.rc('xtick', labelsize=16)    # fontsize of the tick labels
    plt.hist2d(sigma, yerror, bins=[xbins,ybins], norm=LogNorm())
    cb = plt.colorbar()
    ax.set_xlabel('Sigma (' + method + ')', fontsize=38, labelpad=15.)
    ax.set_ylabel('Observed - Mean Predicted', fontsize=38, labelpad=15.)
    ax.axis([sigma.min()*0.98, sigma.max()*1.02, -yerror.max(), yerror.max()])
    plt.setp(ax.get_xticklabels(), fontsize=28)
    plt.setp(ax.get_yticklabels(), fontsize=28)
    cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=22)
    plt.grid(True)
    plt.savefig(figprefix + '_density_sigma_error.png')
    plt.close()
    print('Generated plot: ', figprefix + '_density_sigma_error.png') 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:41,代码来源:viz_utils.py

示例6: hist2d

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def hist2d(self, x=None, x0=None, x1=None, bins=10, data_range=None, log_norm=False, fig_def=None):
        """

        :param x: either x or x0, x1 is given
        :param x0:
        :param x1:
        :param bins:
        :param data_range:
        :param log_norm: if log normalization is used
        :param fig_def:
        :return:
        """
        from matplotlib.colors import LogNorm
        # check inputs
        self._reset_fig_def_(fig_def)
        if x is not None:
            x0 = x[:, 0]
            x1 = x[:, 1]
        if data_range is None:
            data_range = [[-1.0, 1.0], [-1.0, 1.0]]
        num_instances = x0.shape[0]
        if num_instances > 200:
            count_min = np.ceil(num_instances/bins/bins*0.05)  # bins under this value will not be displayed
            print('hist2d; counts under {} will be ignored.'.format(count_min))
        else:
            count_min = None

        # plot figure
        self.new_figure()
        if log_norm:
            plt.hist2d(x0, x1, bins, range=data_range, norm=LogNorm(), cmin=count_min)
        else:
            plt.hist2d(x0, x1, bins, range=data_range, cmin=count_min)
        self._add_figure_labels_()
        plt.colorbar()
        self.show_figure() 
开发者ID:richardwth,项目名称:MMD-GAN,代码行数:38,代码来源:graph_func.py

示例7: plot_histogram_error_per_sigma

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import hist2d [as 别名]
def plot_histogram_error_per_sigma(sigma, yerror, method=None, figprefix=None):
    """Functionality to plot a 1D histogram of the distribution of
       computed errors (i.e. values of observed - predicted) observed 
       for specific values of standard deviations computed. The range of
       standard deviations computed is split in xbins values and the 
       1D histograms of error distributions for the smallest six
       standard deviations are plotted.
       The plot generated is stored in a png file.

    Parameters
    ----------
    sigma : numpy array
      Array with standard deviations computed.
    yerror : numpy array
      Array with errors computed (observed - predicted).
    method : string
      Method used to comput the standard deviations (i.e. dropout, 
      heteroscedastic, etc.).
    figprefix : string
      String to prefix the filename to store the figure generated.
      A '_histogram_error_per_sigma.png' string will be appended to 
      the figprefix given.
    """
    
    xbins = 21
    ybins = 31

    H, xedges, yedges, img = plt.hist2d(sigma, yerror,# normed=True,
                                        bins=[xbins,ybins])

    fig = plt.figure(figsize=(14,16))
    legend = []
    for ii in range(6):#(H.shape[0]):
        if ii is not 1:
            plt.plot(yedges[0:H.shape[1]], H[ii,:]/np.sum(H[ii,:]), marker='o',
                 markersize=12, lw=6.)
        legend.append(str((xedges[ii] + xedges[ii+1])/2))
    plt.legend(legend, fontsize=16)
    ax = plt.gca()
    plt.title('Error Dist. per Sigma for ' + method, fontsize=40)
    ax.set_xlabel('Observed - Mean Predicted', fontsize=38, labelpad=15.)
    ax.set_ylabel('Density', fontsize=38, labelpad=15.)
    plt.setp(ax.get_xticklabels(), fontsize=28)
    plt.setp(ax.get_yticklabels(), fontsize=28)
    plt.grid(True)
    plt.savefig(figprefix + '_histogram_error_per_sigma.png')
    plt.close()
    print('Generated plot: ', figprefix + '_histogram_error_per_sigma.png') 
开发者ID:ECP-CANDLE,项目名称:Benchmarks,代码行数:50,代码来源:viz_utils.py


注:本文中的matplotlib.pyplot.hist2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。