本文整理汇总了Python中matplotlib.pyplot.get_cmap方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.get_cmap方法的具体用法?Python pyplot.get_cmap怎么用?Python pyplot.get_cmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.get_cmap方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_heatmap
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def draw_heatmap(img, heatmap, alpha=0.5):
"""Draw a heatmap overlay over an image."""
assert len(heatmap.shape) == 2 or \
(len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
assert img.dtype in [np.uint8, np.int32, np.int64]
assert heatmap.dtype in [np.float32, np.float64]
if img.shape[0:2] != heatmap.shape[0:2]:
heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
heatmap_rs = ia.imresize_single_image(
heatmap_rs[..., np.newaxis],
img.shape[0:2],
interpolation="nearest"
)
heatmap = np.squeeze(heatmap_rs) / 255.0
cmap = plt.get_cmap('jet')
heatmap_cmapped = cmap(heatmap)
heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
heatmap_cmapped = heatmap_cmapped * 255
mix = (1-alpha) * img + alpha * heatmap_cmapped
mix = np.clip(mix, 0, 255).astype(np.uint8)
return mix
示例2: showImgAtt
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def showImgAtt(img, instance, step, ax):
dx, dy = 0.05, 0.05
x = np.arange(-1.5, 1.5, dx)
y = np.arange(-1.0, 1.0, dy)
X, Y = np.meshgrid(x, y)
extent = np.min(x), np.max(x), np.min(y), np.max(y)
ax.cla()
img1 = ax.imshow(img, interpolation = "nearest", extent = extent)
ax.imshow(np.array(instance["attentions"]["kb"][step]).reshape(imageDims), cmap = plt.get_cmap(args.cmap),
interpolation = "bicubic", extent = extent)
ax.set_axis_off()
plt.axis("off")
ax.set_aspect("auto")
示例3: plot_alerts
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def plot_alerts(_g, _bank_accts, _output_png):
bank_ids = _bank_accts.keys()
cmap = plt.get_cmap("tab10")
pos = nx.nx_agraph.graphviz_layout(_g)
plt.figure(figsize=(12.0, 8.0))
plt.axis('off')
for i, bank_id in enumerate(bank_ids):
color = cmap(i)
members = _bank_accts[bank_id]
nx.draw_networkx_nodes(_g, pos, members, node_size=300, node_color=color, label=bank_id)
nx.draw_networkx_labels(_g, pos, {n: n for n in members}, font_size=10)
edge_labels = nx.get_edge_attributes(_g, "label")
nx.draw_networkx_edges(_g, pos)
nx.draw_networkx_edge_labels(_g, pos, edge_labels, font_size=6)
plt.legend(numpoints=1)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
plt.savefig(_output_png, dpi=120)
示例4: plotresult
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def plotresult(org_vec,noisy_vec,out_vec):
plt.matshow(np.reshape(org_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Original Image")
plt.colorbar()
plt.matshow(np.reshape(noisy_vec, (28, 28)), cmap=plt.get_cmap('gray'))
plt.title("Input Image")
plt.colorbar()
outimg = np.reshape(out_vec, (28, 28))
plt.matshow(outimg, cmap=plt.get_cmap('gray'))
plt.title("Reconstructed Image")
plt.colorbar()
plt.show()
# NETOWRK PARAMETERS
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow-Second-Edition,代码行数:18,代码来源:denoising_autoencoder.py
示例5: plot_2Dpose
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def plot_2Dpose(ax, pose_2d, bones, bones_dashed=[], bones_dashdot=[], colormap='hsv',
linewidth=1, limits=None, color_order=[0, 5, 9, 15, 2, 10, 12, 4, 14, 13, 11, 3, 7, 8, 6, 1]):
cmap = plt.get_cmap(colormap)
plt.axis('equal')
maximum = max(color_order) #len(bones)
for i, bone in enumerate(bones):
colorIndex = (color_order[i] * cmap.N / float(maximum))
# color = cmap(int(colorIndex))
# colorIndex = i / len(bones)
color = cmap(int(colorIndex))
ax.plot(pose_2d[0, bone], pose_2d[1, bone], '-', color=color, linewidth=linewidth)
for bone in bones_dashed:
ax.plot(pose_2d[0, bone], pose_2d[1, bone], ':', color=color, linewidth=linewidth)
for bone in bones_dashdot:
ax.plot(pose_2d[0, bone], pose_2d[1, bone], '--', color=color, linewidth=linewidth)
if not limits==None:
ax.set_xlim(limits[0],limits[2])
ax.set_ylim(limits[1],limits[3])
示例6: plot2d_all
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def plot2d_all(trajectories, tracks):
"""
Plot all tracks on a single 2d slice
:param trajectories: dictionary output of the Alyx REST query on trajectories
:param tracks:
:return:
"""
plt.figure()
axs = brat.plot_sslice(brat.bc.i2x(190) * 1e3, cmap=plt.get_cmap('bone'))
plt.figure()
axc = brat.plot_cslice(brat.bc.i2y(350) * 1e3)
for xyz in tracks['xyz']:
axc.plot(xyz[:, 0] * 1e3, xyz[:, 2] * 1e3, 'b')
axs.plot(xyz[:, 1] * 1e3, xyz[:, 2] * 1e3, 'b')
for trj in trajectories:
ins = atlas.Insertion.from_dict(trj, brain_atlas=brat)
xyz = ins.xyz
axc.plot(xyz[:, 0] * 1e3, xyz[:, 2] * 1e3, 'r')
axs.plot(xyz[:, 1] * 1e3, xyz[:, 2] * 1e3, 'r')
示例7: tryPlot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def tryPlot():
cmap = plt.get_cmap('jet_r')
fig = plt.figure()
ax = Axes3D(fig)
draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
-0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
-0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
-0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
-0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
plt.show()
示例8: showGenshapes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def showGenshapes(genshapes):
for i in range(len(genshapes)):
recover_boxes = genshapes[i]
fig = plt.figure(i)
cmap = plt.get_cmap('jet_r')
ax = Axes3D(fig)
ax.set_xlim(-0.7, 0.7)
ax.set_ylim(-0.7, 0.7)
ax.set_zlim(-0.7, 0.7)
for jj in range(len(recover_boxes)):
p = recover_boxes[jj][:]
draw(ax, p, cmap(float(jj)/len(recover_boxes)))
plt.show()
示例9: tryPlot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def tryPlot():
cmap = plt.get_cmap(u'jet_r')
fig = plt.figure()
ax = Axes3D(fig)
draw(ax, [-0.0152730000000000,-0.113074400000000,0.00867852000000000,0.766616000000000,0.483920000000000,0.0964542000000000,
8.65505000000000e-06,-0.000113369000000000,0.999997000000000,0.989706000000000,0.143116000000000,7.65900000000000e-06], cmap(float(1)/7))
draw(ax, [-0.310188000000000,0.188456800000000,0.00978854000000000,0.596362000000000,0.577190000000000,0.141414800000000,
-0.331254000000000,0.943525000000000,0.00456327000000000,-0.00484978000000000,-0.00653891000000000,0.999967000000000], cmap(float(2)/7))
draw(ax, [-0.290236000000000,-0.334664000000000,-0.328648000000000,0.322898000000000,0.0585966000000000,0.0347996000000000,
-0.330345000000000,-0.942455000000000,0.0514932000000000,0.0432524000000000,0.0393726000000000,0.998095000000000], cmap(float(3)/7))
draw(ax, [-0.289462000000000,-0.334842000000000,0.361558000000000,0.322992000000000,0.0593536000000000,0.0350418000000000,
0.309240000000000,0.949730000000000,0.0485183000000000,-0.0511885000000000,-0.0343219000000000,0.998099000000000], cmap(float(4)/7))
draw(ax, [0.281430000000000,-0.306584000000000,0.382928000000000,0.392156000000000,0.0409424000000000,0.0348472000000000,
0.322342000000000,-0.942987000000000,0.0828920000000000,-0.0248683000000000,0.0791002000000000,0.996556000000000], cmap(float(5)/7))
draw(ax, [0.281024000000000,-0.306678000000000,-0.366110000000000,0.392456000000000,0.0409366000000000,0.0348446000000000,
-0.322608000000000,0.942964000000000,0.0821142000000000,0.0256742000000000,-0.0780031000000000,0.996622000000000], cmap(float(6)/7))
draw(ax, [0.121108800000000,-0.0146729400000000,0.00279166000000000,0.681576000000000,0.601756000000000,0.0959706000000000,
-0.986967000000000,-0.160173000000000,0.0155341000000000,0.0146809000000000,0.00650174000000000,0.999801000000000], cmap(float(7)/7))
plt.show()
示例10: showGenshapes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def showGenshapes(genshapes):
for i in xrange(len(genshapes)):
recover_boxes = genshapes[i]
fig = plt.figure(i)
cmap = plt.get_cmap(u'jet_r')
ax = Axes3D(fig)
ax.set_xlim(-0.7, 0.7)
ax.set_ylim(-0.7, 0.7)
ax.set_zlim(-0.7, 0.7)
for jj in xrange(len(recover_boxes)):
p = recover_boxes[jj][:]
draw(ax, p, cmap(float(jj)/len(recover_boxes)))
plt.show()
示例11: list_of_hex_colours
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def list_of_hex_colours(N, base_cmap):
"""
Return a list of colors from a colourmap as hex codes
Arguments:
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Author: FJC
"""
cmap = _cm.get_cmap(base_cmap, N)
hex_codes = []
for i in range(cmap.N):
rgb = cmap(i)[:3] # will return rgba, we take only first 3 so we get rgb
hex_codes.append(_mcolors.rgb2hex(rgb))
return hex_codes
示例12: cmap_discretize
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def cmap_discretize(N, cmap):
"""Return a discrete colormap from the continuous colormap cmap.
Arguments:
cmap: colormap instance, eg. cm.jet.
N: number of colors.
Example:
x = resize(arange(100), (5,100))
djet = cmap_discretize(cm.jet, 5)
imshow(x, cmap=djet)
"""
if type(cmap) == str:
cmap = _plt.get_cmap(cmap)
colors_i = _np.concatenate((_np.linspace(0, 1., N), (0.,0.,0.,0.)))
colors_rgba = cmap(colors_i)
indices = _np.linspace(0, 1., N+1)
cdict = {}
for ki,key in enumerate(('red','green','blue')):
cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki])
for i in range(N+1) ]
# Return colormap object.
return _mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024)
示例13: __init__
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def __init__(self, cmap, levels):
if isinstance(cmap, str):
self.cmap = _cm.get_cmap(cmap)
elif isinstance(cmap, _mcolors.Colormap):
self.cmap = cmap
else:
raise ValueError('Colourmap must either be a string name of a colormap, \
or a Colormap object (class instance). Please try again.' \
"Colourmap supplied is of type: ", type(cmap))
self.N = self.cmap.N
self.monochrome = self.cmap.monochrome
self.levels = _np.asarray(levels)#, dtype='float64')
self._x = self.levels
self.levmax = self.levels.max()
self.levmin = self.levels.min()
self.transformed_levels = _np.linspace(self.levmin, self.levmax,
len(self.levels))
示例14: make_coherence_cmap
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def make_coherence_cmap(
mapname="inferno", vmin=1e-5, vmax=1, ncolors=64, outname="coherence-cog.cpt"
):
"""Write default colormap (coherence-cog.cpt) for isce coherence images.
Parameters
----------
mapname : str
matplotlib colormap name
vmin : float
data value mapped to lower end of colormap
vmax : float
data value mapped to upper end of colormap
ncolors : int
number of discrete mapped values between vmin and vmax
"""
cmap = plt.get_cmap(mapname)
cNorm = colors.Normalize(vmin=vmin, vmax=vmax)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)
vals = np.linspace(vmin, vmax, ncolors, endpoint=True)
write_cmap(outname, vals, scalarMap)
return outname
示例15: show_animation
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import get_cmap [as 别名]
def show_animation():
w = 1 << 9
h = 1 << 9
# w = 1920
# h = 1080
sl = SmoothLife(h, w)
sl.add_speckles()
sl.step()
fig = plt.figure()
# Nice color maps: viridis, plasma, gray, binary, seismic, gnuplot
im = plt.imshow(sl.field, animated=True,
cmap=plt.get_cmap("viridis"), aspect="equal")
def animate(*args):
im.set_array(sl.step())
return (im, )
ani = animation.FuncAnimation(fig, animate, interval=60, blit=True)
plt.show()