本文整理汇总了Python中matplotlib.pyplot.gcf方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.gcf方法的具体用法?Python pyplot.gcf怎么用?Python pyplot.gcf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.gcf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_emg_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def test_emg_plot():
sampling_rate = 1000
emg = nk.emg_simulate(duration=10, sampling_rate=1000, burst_number=3)
emg_summary, _ = nk.emg_process(emg, sampling_rate=sampling_rate)
# Plot data over samples.
nk.emg_plot(emg_summary)
# This will identify the latest figure.
fig = plt.gcf()
assert len(fig.axes) == 2
titles = ["Raw and Cleaned Signal", "Muscle Activation"]
for (ax, title) in zip(fig.get_axes(), titles):
assert ax.get_title() == title
assert fig.get_axes()[1].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks())
plt.close(fig)
# Plot data over time.
nk.emg_plot(emg_summary, sampling_rate=sampling_rate)
# This will identify the latest figure.
fig = plt.gcf()
assert fig.get_axes()[1].get_xlabel() == "Time (seconds)"
示例2: test_eog_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def test_eog_plot():
eog_signal = nk.data("eog_200hz")["vEOG"]
signals, info = nk.eog_process(eog_signal, sampling_rate=200)
# Plot
nk.eog_plot(signals)
fig = plt.gcf()
assert len(fig.axes) == 2
titles = ["Raw and Cleaned Signal", "Blink Rate"]
legends = [["Raw", "Cleaned", "Blinks"], ["Rate", "Mean"]]
ylabels = ["Amplitude (mV)", "Blinks per minute"]
for (ax, title, legend, ylabel) in zip(fig.get_axes(), titles, legends, ylabels):
assert ax.get_title() == title
subplot = ax.get_legend_handles_labels()
assert subplot[1] == legend
assert ax.get_ylabel() == ylabel
assert fig.get_axes()[1].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks())
plt.close(fig)
示例3: test_eda_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def test_eda_plot():
sampling_rate = 1000
eda = nk.eda_simulate(duration=30, sampling_rate=sampling_rate, scr_number=6, noise=0, drift=0.01, random_state=42)
eda_summary, _ = nk.eda_process(eda, sampling_rate=sampling_rate)
# Plot data over samples.
nk.eda_plot(eda_summary)
# This will identify the latest figure.
fig = plt.gcf()
assert len(fig.axes) == 3
titles = ["Raw and Cleaned Signal", "Skin Conductance Response (SCR)", "Skin Conductance Level (SCL)"]
for (ax, title) in zip(fig.get_axes(), titles):
assert ax.get_title() == title
assert fig.get_axes()[2].get_xlabel() == "Samples"
np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks(), fig.axes[2].get_xticks())
plt.close(fig)
# Plot data over seconds.
nk.eda_plot(eda_summary, sampling_rate=sampling_rate)
# This will identify the latest figure.
fig = plt.gcf()
assert fig.get_axes()[2].get_xlabel() == "Seconds"
示例4: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def plot(self, line_width=1, point_radius=math.sqrt(2.0), annotation_size=8, dpi=120, save=True, name=None):
x = [self.nodes[i][0] for i in self.global_best_tour]
x.append(x[0])
y = [self.nodes[i][1] for i in self.global_best_tour]
y.append(y[0])
plt.plot(x, y, linewidth=line_width)
plt.scatter(x, y, s=math.pi * (point_radius ** 2.0))
plt.title(self.mode)
for i in self.global_best_tour:
plt.annotate(self.labels[i], self.nodes[i], size=annotation_size)
if save:
if name is None:
name = '{0}.png'.format(self.mode)
plt.savefig(name, dpi=dpi)
plt.show()
plt.gcf().clear()
示例5: test_root_locus_zoom
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def test_root_locus_zoom(self):
"""Check the zooming functionality of the Root locus plot"""
system = TransferFunction([1000], [1, 25, 100, 0])
root_locus(system)
fig = plt.gcf()
ax_rlocus = fig.axes[0]
event = type('test', (object,), {'xdata': 14.7607954359, 'ydata': -35.6171379864, 'inaxes': ax_rlocus.axes})()
ax_rlocus.set_xlim((-10.813628105112421, 14.760795435937652))
ax_rlocus.set_ylim((-35.61713798641108, 33.879716621220311))
plt.get_current_fig_manager().toolbar.mode = 'zoom rect'
_RLClickDispatcher(event, system, fig, ax_rlocus, '-')
zoom_x = ax_rlocus.lines[-2].get_data()[0][0:5]
zoom_y = ax_rlocus.lines[-2].get_data()[1][0:5]
zoom_y = [abs(y) for y in zoom_y]
zoom_x_valid = [-5. ,- 4.61281263, - 4.16689986, - 4.04122642, - 3.90736502]
zoom_y_valid = [0. ,0., 0., 0., 0.]
assert_array_almost_equal(zoom_x,zoom_x_valid)
assert_array_almost_equal(zoom_y,zoom_y_valid)
示例6: test_custom_bode_default
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def test_custom_bode_default(self):
ct.config.defaults['bode.dB'] = True
ct.config.defaults['bode.deg'] = True
ct.config.defaults['bode.Hz'] = True
# Generate a Bode plot
plt.figure()
omega = np.logspace(-3, 3, 100)
ct.bode_plot(self.sys, omega, dB=True)
mag_x, mag_y = (((plt.gcf().axes[0]).get_lines())[0]).get_data()
np.testing.assert_almost_equal(mag_y[0], 20*log10(10), decimal=3)
# Override defaults
plt.figure()
ct.bode_plot(self.sys, omega, Hz=True, deg=False, dB=True)
mag_x, mag_y = (((plt.gcf().axes[0]).get_lines())[0]).get_data()
phase_x, phase_y = (((plt.gcf().axes[1]).get_lines())[0]).get_data()
np.testing.assert_almost_equal(mag_x[0], 0.001 / (2*pi), decimal=6)
np.testing.assert_almost_equal(mag_y[0], 20*log10(10), decimal=3)
np.testing.assert_almost_equal(phase_y[-1], -pi, decimal=2)
ct.reset_defaults()
示例7: plot_filters
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def plot_filters(filters):
'''Create a plot of conv filters, visualized as pixel arrays.'''
imgs = filters.get_value()
N, channels, x, y = imgs.shape
n = int(np.sqrt(N))
assert n * n == N, 'filters must contain a square number of rows!'
assert channels == 1 or channels == 3, 'can only plot grayscale or rgb filters!'
img = np.zeros(((y+1) * n - 1, (x+1) * n - 1, channels), dtype=imgs[0].dtype)
for i, pix in enumerate(imgs):
r, c = divmod(i, n)
img[r * (y+1):(r+1) * (y+1) - 1,
c * (x+1):(c+1) * (x+1) - 1] = pix.transpose((1, 2, 0))
img -= img.min()
img /= img.max()
ax = plt.gcf().add_subplot(111)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.set_frame_on(False)
ax.imshow(img.squeeze(), cmap=plt.cm.gray)
示例8: create_image
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def create_image(D, filename, filepath = '_static/'):
# if any(D.size == 0):
# D = pg.text('?')
qp(D)
fig = plt.gcf()
# ax = plt.gca()
scale = 0.75
fig.set_size_inches(10*scale, 4*scale, forward=True)
# ax.autoscale()
# plt.draw()
# plt.show(block = False)
filename += '.png'
filepathfull = os.path.join(os.path.curdir, filepath, filename)
print(filepathfull)
fig.savefig(filepathfull, dpi=int(96/scale))
# example-rectangle
示例9: frames_to_gif
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def frames_to_gif(frames, prefix, save_dir, interval=50, fps=30):
"""
Convert frames to gif file
"""
assert len(frames) > 0
plt.figure(figsize=(frames[0].shape[1] / 72.,
frames[0].shape[0] / 72.), dpi=72)
patch = plt.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
# TODO: interval should be 1000 / fps ?
anim = animation.FuncAnimation(
plt.gcf(), animate, frames=len(frames), interval=interval)
output_path = "{}/{}.gif".format(save_dir, prefix)
anim.save(output_path, writer='imagemagick', fps=fps)
示例10: example_1
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def example_1():
"""Run example 1"""
# script inputs
mod_path = os.path.dirname(os.path.abspath(__file__)) # current module
air_path = os.path.join(mod_path, '..',
'tests', 'test_utils', 'files', 'demo_selig.dat')
# load coordinates from a a selig-style airfoil file
air_df = read_selig(air_path)
# plot the airfoil
plot_airfoil(air_df)
# save the png for the documentation
fig = plt.gcf()
save_name = os.path.basename(__file__).replace('.py', '.png') # file name
save_path = os.path.join(mod_path, save_name)
fig.savefig(save_path)
示例11: state
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def state(self):
img = np.copy(self.world[self.sight_range:self.world.shape[0]-self.sight_range,self.sight_range:self.world.shape[0]-self.sight_range])
img[img==0] = 256
img[img==1] = 215
img[img==2] = 123
img[img==3] = 175
img[img==9] = 1
p = plt.imshow(img, interpolation='nearest', cmap='nipy_spectral')
fig = plt.gcf()
c1 = mpatches.Patch(color='red', label='cats')
c2 = mpatches.Patch(color='green', label='mice')
c3 = mpatches.Patch(color='yellow', label='cheese')
plt.legend(handles=[c1,c2,c3],loc='center left',bbox_to_anchor=(1, 0.5))
#plt.savefig("cat_mouse%i.png" % self.gif, bbox_inches='tight')
#self.gif += 1
plt.pause(0.1)
# Run algorithm
示例12: run_story_evaluation
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def run_story_evaluation(story_file, policy_model_path, nlu_model_path,
out_file, max_stories):
"""Run the evaluation of the stories, plots the results."""
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
test_y, preds = collect_story_predictions(story_file, policy_model_path,
nlu_model_path, max_stories)
log_evaluation_table(test_y, preds)
cnf_matrix = confusion_matrix(test_y, preds)
plot_confusion_matrix(cnf_matrix, classes=unique_labels(test_y, preds),
title='Action Confusion matrix')
fig = plt.gcf()
fig.set_size_inches(int(20), int(20))
fig.savefig(out_file, bbox_inches='tight')
示例13: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def plot(self, posys=None, axes=None):
"Plots a sweep for each posy"
if len(self["sweepvariables"]) != 1:
print("SolutionArray.plot only supports 1-dimensional sweeps")
if not hasattr(posys, "__len__"):
posys = [posys]
import matplotlib.pyplot as plt
from .interactive.plot_sweep import assign_axes
from . import GPBLU
(swept, x), = self["sweepvariables"].items()
posys, axes = assign_axes(swept, posys, axes)
for posy, ax in zip(posys, axes):
y = self(posy) if posy not in [None, "cost"] else self["cost"]
ax.plot(x, y, color=GPBLU)
if len(axes) == 1:
axes, = axes
return plt.gcf(), axes
# pylint: disable=too-many-branches,too-many-locals,too-many-statements
示例14: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def plot(self, posys=None, axes=None):
"Plots the sweep for each posy"
import matplotlib.pyplot as plt
from ..interactive.plot_sweep import assign_axes
from .. import GPBLU
if not hasattr(posys, "__len__"):
posys = [posys]
for i, posy in enumerate(posys):
if posy in [None, "cost"]:
posys[i] = self.bst.costposy
posys, axes = assign_axes(self.bst.sweptvar, posys, axes)
for posy, ax in zip(posys, axes):
if self._is_cost(posy): # with small tol should look like a line
ax.fill_between(self.sampled_at,
self.cost_lb(), self.cost_ub(),
facecolor=GPBLU, edgecolor=GPBLU,
linewidth=0.75)
else:
ax.plot(self.sampled_at, self(posy), color=GPBLU)
if len(axes) == 1:
axes, = axes
return plt.gcf(), axes
示例15: load_and_plot_constraints_benchmark
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import gcf [as 别名]
def load_and_plot_constraints_benchmark():
benchmark = np.loadtxt(fname='benchmark_constraints_time.dat')
tried = np.loadtxt(fname='benchmark_constraints_tried.dat')
accepted = np.loadtxt(fname='benchmark_constraints_accepted.dat')
# plot
keys = open('benchmark_constraints_time.dat').readlines()[0].split("#")[1].split()
minY = 0
maxY = 0
for idx in range(1,len(keys)):
style = '-'
if keys[idx] == 'all':
style = '.-'
# mean accepted
meanAccepted = int( sum(benchmark[:,0]*accepted[:,idx])/sum(benchmark[:,0]) )
plt.plot(benchmark[:,0], benchmark[:,idx], style, label=keys[idx]+" (%i)"%meanAccepted)
minY = min(minY, min(benchmark[:,idx]) )
maxY = max(minY, max(benchmark[:,idx]) )
# annotate tried(accepted)
for i, txt in enumerate( accepted[:,-1] ):
T = 100*float(tried[i,-1])/float(tried[1,1])
A = 100*float(accepted[i,-1])/float(tried[1,1])
plt.gca().annotate( "%.2f%% (%.2f%%)"%(T,A), #"%i (%i)"%( int(tried[i,-1]),int(txt) ),
xy = (benchmark[i,0],benchmark[i,-1]),
rotation=90,
horizontalalignment='center',
verticalalignment='bottom')
# show plot
plt.legend(frameon=False, loc='upper left')
plt.xlabel("Number of atoms per group")
plt.ylabel("Time per step (s)")
plt.gcf().patch.set_facecolor('white')
# set fig size
#figSize = plt.gcf().get_size_inches()
#figSize[1] = figSize[1]+figSize[1]/2.
#plt.gcf().set_size_inches(figSize, forward=True)
plt.ylim((None, maxY+0.3*(maxY-minY)))
# save
plt.savefig("benchmark_constraint.png")
# plot
plt.show()