本文整理汇总了Python中matplotlib.pyplot.cm方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.cm方法的具体用法?Python pyplot.cm怎么用?Python pyplot.cm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.cm方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def __init__(self, cbar, mappable):
self.cbar = cbar
self.mappable = mappable
self.press = None
self.cycle = sorted([i for i in dir(plt.cm) if hasattr(getattr(plt.cm, i), 'N')])
self.index = self.cycle.index(cbar.get_cmap().name)
示例2: squaremesh
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def squaremesh(mesh, prop, cmap=pyplot.cm.jet, vmin=None, vmax=None):
"""
Make a pseudo-color plot of a mesh of squares
Parameters:
* mesh : :class:`geoist.mesher.SquareMesh` or compatible
The mesh (a compatible mesh must implement the methods ``get_xs`` and
``get_ys``)
* prop : str
The physical property of the squares to use as the color scale.
* cmap : colormap
Color map to be used. (see pyplot.cm module)
* vmin, vmax : float
Saturation values of the colorbar.
Returns:
* axes : ``matplitlib.axes``
The axes element of the plot
"""
if prop not in mesh.props:
raise ValueError("Can't plot because 'mesh' doesn't have property '%s'"
% (prop))
xs = mesh.get_xs()
ys = mesh.get_ys()
X, Y = numpy.meshgrid(xs, ys)
V = numpy.reshape(mesh.props[prop], mesh.shape)
plot = pyplot.pcolor(X, Y, V, cmap=cmap, vmin=vmin, vmax=vmax, picker=True)
pyplot.xlim(xs.min(), xs.max())
pyplot.ylim(ys.min(), ys.max())
return plot
示例3: seismic_image
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def seismic_image(section, dt, ranges=None, cmap=pyplot.cm.gray,
aspect=None, vmin=None, vmax=None):
"""
Plot a seismic section (numpy 2D array matrix) as an image.
Parameters:
* section : 2D array
matrix of traces (first dimension time, second dimension traces)
* dt : float
sample rate in seconds
* ranges : (x1, x2)
min and max horizontal coordinate values (default trace number)
* cmap : colormap
color map to be used. (see pyplot.cm module)
* aspect : float
matplotlib imshow aspect parameter, ratio between axes
* vmin, vmax : float
min and max values for imshow
"""
npts, maxtraces = section.shape # time/traces
if maxtraces < 1:
raise IndexError("Nothing to plot")
if npts < 1:
raise IndexError("Nothing to plot")
t = numpy.linspace(0, dt*npts, npts)
data = section
if ranges is None:
ranges = (0, maxtraces)
x0, x1 = ranges
extent = (x0, x1, t[-1:], t[0])
if aspect is None: # guarantee a rectangular picture
aspect = numpy.round((x1 - x0)/numpy.max(t))
aspect -= aspect*0.2
if vmin is None and vmax is None:
scale = numpy.abs([section.max(), section.min()]).max()
vmin = -scale
vmax = scale
pyplot.imshow(data, aspect=aspect, cmap=cmap, origin='upper',
extent=extent, vmin=vmin, vmax=vmax)
示例4: read_correct_ch_dam_data
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def read_correct_ch_dam_data(csv_file, calibration_slope, calibration_intercept, stage_cutoff=0.1):
"""
Function to read and calibrate odyssey capacitance sensor data
:param csv_file: csv file created from sensor
:param calibration_slope: slope
:param calibration_intercept: intercept
:return: calibrated and time corrected data
Examples:
>>> read_correct_ch_dam_data(csv_file=file.csv, calibration_slope=0.111, calibration_intercept=0.222)
"""
water_level = pd.read_csv(csv_file, skiprows=9, sep=',', header=0,
names=['scan no', 'date', 'time', 'raw value', 'calibrated value'])
water_level['calibrated value'] = (water_level['raw value'] * calibration_slope) + calibration_intercept # in cm
# water_level['calibrated value'] = np.round(water_level['calibrated value']/resolution_ody)*resolution_ody
water_level['calibrated value'] /= 1000.0
water_level['calibrated value'] = myround(a=water_level['calibrated value'], decimals=3)
# #change the column name
water_level.columns.values[4] = 'stage(m)'
# print water_level.head()
# create date time index
format = '%d/%m/%Y %H:%M:%S'
c_str = ' 24:00:00'
for index, row in water_level.iterrows():
x_str = row['time']
if x_str == c_str:
# convert string to datetime object
r_date = pd.to_datetime(row['date'], format='%d/%m/%Y ')
# add 1 day
c_date = r_date + timedelta(days=1)
# convert datetime to string
c_date = c_date.strftime('%d/%m/%Y ')
c_time = ' 00:00:00'
# water_level.loc[:, ('date', index)] = c_date
# water_level.loc[:, ('time', index)] = c_time
water_level.loc[index,'date'] = c_date
water_level.loc[index,'time'] = c_time
water_level['date_time'] = pd.to_datetime(water_level['date'] + water_level['time'], format=format)
water_level.set_index(water_level['date_time'], inplace=True)
# # drop unneccessary columns before datetime aggregation
for index, row in water_level.iterrows():
# print row
obs_stage = row['stage(m)']
if obs_stage < stage_cutoff:
# water_level.loc[:, ('stage(m)', index.strftime(date_format))] = 0.0
water_level.loc[index,'stage(m)'] = 0.0
water_level.drop(['scan no', 'date', 'time', 'date_time'], inplace=True, axis=1)
return water_level
示例5: register_cptcity_cmaps
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def register_cptcity_cmaps(cptcitycmaps, urlkw={}, cmapnamekw={}):
"""Register cpt-city colormaps from a list of URLs and/or files to the current plt.cm space
Parameters
----------
cptcitycmaps : str, dict, or list
str will be interpreted as path to scan for .cpt files
list over file names or urls to .cpt files
dict can be used to provide (name : fname/url) mappings
urlkw : dict
keyword arguments passed to cmap_from_cptcity_url
Usage
-----
To register a set of color maps, use, e.g.
register_cptcity_cmaps({'ncl_cosam' : "http://soliton.vm.bytemark.co.uk/pub/cpt-city/ncl/cosam.cpt"})
Retrieve the cmap using,
plt.cm.get_cmap('ncl_cosam')
"""
def _register_with_reverse(cmap):
plt.cm.register_cmap(cmap=cmap)
plt.cm.register_cmap(cmap=modify.reverse_cmap(cmap))
def _try_reading_methods(cmapfile, cmapname=None):
try:
return gmtColormap(cmapfile, name=cmapname)
except IOError:
try:
return cmap_from_cptcity_url(cmapfile, name=cmapname, **urlkw)
except:
raise
if isinstance(cptcitycmaps, str):
if cptcitycmaps.endswith('.cpt'):
cptcitycmaps = [cptcitycmaps]
else:
cptcitycmaps = find_cpt_files(cptcitycmaps, **cmapnamekw)
cmaps = []
if isinstance(cptcitycmaps, dict):
for cmapname, cmapfile in cptcitycmaps.items():
cmap = _try_reading_methods(cmapfile, cmapname)
_register_with_reverse(cmap)
cmaps.append(cmap)
else:
for cmapfile in cptcitycmaps:
cmap = _try_reading_methods(cmapfile)
_register_with_reverse(cmap)
cmaps.append(cmap)
return cmaps
示例6: contourf
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def contourf(x, y, v, shape, levels, interp=False, extrapolate=False,
vmin=None, vmax=None, cmap=pyplot.cm.jet, basemap=None):
"""
Make a filled contour plot of the data.
Parameters:
* x, y : array
Arrays with the x and y coordinates of the grid points. If the data is
on a regular grid, then assume x varies first (ie, inner loop), then y.
* v : array
The scalar value assigned to the grid points.
* shape : tuple = (ny, nx)
Shape of the regular grid.
If interpolation is not False, then will use *shape* to grid the data.
* levels : int or list
Number of contours to use or a list with the contour values.
* interp : True or False
Wether or not to interpolate before trying to plot. If data is not on
regular grid, set to True!
* extrapolate : True or False
Wether or not to extrapolate the data when interp=True
* vmin, vmax
Saturation values of the colorbar. If provided, will overwrite what is
set by *levels*.
* cmap : colormap
Color map to be used. (see pyplot.cm module)
* basemap : mpl_toolkits.basemap.Basemap
If not None, will use this basemap for plotting with a map projection
(see :func:`~geoist.vis.giplt.basemap` for creating basemaps)
Returns:
* levels : list
List with the values of the contour levels
"""
if x.shape != y.shape != v.shape:
raise ValueError("Input arrays x, y, and v must have same shape!")
if interp:
x, y, v = gridder.interp(x, y, v, shape, extrapolate=extrapolate)
X = numpy.reshape(x, shape)
Y = numpy.reshape(y, shape)
V = numpy.reshape(v, shape)
kwargs = dict(vmin=vmin, vmax=vmax, cmap=cmap)
#kwargs = dict(vmin=vmin, vmax=vmax, cmap=cmap, picker=True)
if basemap is None:
ct_data = pyplot.contourf(X, Y, V, levels, **kwargs)
pyplot.xlim(X.min(), X.max())
pyplot.ylim(Y.min(), Y.max())
else:
lon, lat = basemap(X, Y)
ct_data = basemap.contourf(lon, lat, V, levels, **kwargs)
return ct_data.levels
示例7: pcolor
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import cm [as 别名]
def pcolor(x, y, v, shape, interp=False, extrapolate=False, cmap=pyplot.cm.jet,
vmin=None, vmax=None, basemap=None):
"""
Make a pseudo-color plot of the data.
Parameters:
* x, y : array
Arrays with the x and y coordinates of the grid points. If the data is
on a regular grid, then assume x varies first (ie, inner loop), then y.
* v : array
The scalar value assigned to the grid points.
* shape : tuple = (ny, nx)
Shape of the regular grid.
If interpolation is not False, then will use *shape* to grid the data.
* interp : True or False
Wether or not to interpolate before trying to plot. If data is not on
regular grid, set to True!
* extrapolate : True or False
Wether or not to extrapolate the data when interp=True
* cmap : colormap
Color map to be used. (see pyplot.cm module)
* vmin, vmax
Saturation values of the colorbar.
* basemap : mpl_toolkits.basemap.Basemap
If not None, will use this basemap for plotting with a map projection
(see :func:`~geoist.vis.giplt.basemap` for creating basemaps)
Returns:
* axes : ``matplitlib.axes``
The axes element of the plot
"""
if x.shape != y.shape != v.shape:
raise ValueError("Input arrays x, y, and v must have same shape!")
if vmin is None:
vmin = v.min()
if vmax is None:
vmax = v.max()
if interp:
x, y, v = gridder.interp(x, y, v, shape, extrapolate=extrapolate)
X = numpy.reshape(x, shape)
Y = numpy.reshape(y, shape)
V = numpy.reshape(v, shape)
if basemap is None:
plot = pyplot.pcolor(X, Y, V, cmap=cmap, vmin=vmin, vmax=vmax,
picker=True)
pyplot.xlim(X.min(), X.max())
pyplot.ylim(Y.min(), Y.max())
else:
lon, lat = basemap(X, Y)
plot = basemap.pcolor(lon, lat, V, cmap=cmap, vmin=vmin, vmax=vmax,
picker=True)
return plot