本文整理汇总了Python中matplotlib.pyplot.clim方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.clim方法的具体用法?Python pyplot.clim怎么用?Python pyplot.clim使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.clim方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
示例2: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Epochs
示例3: plotNNFilter
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例4: plotNNFilterOverlay
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
示例5: _plot_connectivity_helper
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def _plot_connectivity_helper(self, ii, ji, mat_datai, data, lims=[1, 8]):
"""
A debug function used to plot the adjacency/connectivity matrix.
"""
from matplotlib.pyplot import quiver, colorbar, clim, matshow
I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0)
mat_data = mat_datai[I]
j = ji[I]
i = ii[I]
x = i.astype(float) % data.shape[1]
y = i.astype(float) // data.shape[1]
x1 = (j.astype(float) % data.shape[1]).ravel()
y1 = (j.astype(float) // data.shape[1]).ravel()
nx = (x1 - x)
ny = (y1 - y)
matshow(data, cmap='gist_rainbow'); colorbar(); clim(lims)
quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy',
scale=1, cmap='bone')
colorbar(); clim([0, 1])
示例6: plot_study
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def plot_study(self, relative=True):
if relative:
z = self.rel_error
else:
z = self.error
fig, ax = plt.subplots()
cs = ax.contourf(self.P1, self.P2, z, np.linspace(0, 1, 101))
fig.colorbar(cs, ticks=np.linspace(0, 1, 6))
# plt.clim(0, 1)
plt.xlabel(self.p1_name)
plt.ylabel(self.p2_name)
plt.show()
示例7: updateColorBar
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def updateColorBar(self, val):
"""Update slider for scaling log colorbar in 2D hist."""
histVMax = np.power(10, self.sHistC.val)
plt.clim(vmax=histVMax)
示例8: create_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def create_plot(self, count, date_index):
"""
Plots and saves a single world map image to the data folder.
:param count: Current number of image processed. If it's the first image it's 0.
Needed for name of saved image (plot0, plot1 etc)
:param date_index: Index for DATES array from which we will get data.
"""
plot.figure(count)
color_mesh = self.world_map.pcolormesh(Plotter.LONGITUDES, Plotter.LATITUDES,
np.squeeze(Plotter.TEMPERATURES[date_index]),
cmap=self.color_map)
color_bar = self.world_map.colorbar(color_mesh, location="bottom", pad="10%")
color_bar.set_label(Plotter.TEMPERATURE_UNIT)
Plotter.draw_map_details(self.world_map)
date = Plotter.get_display_date(Plotter.DATES[date_index])
plot.title(f"Plot for {date}")
# This scales the plot to -10,10 making those 2 mark "extremes"
# but if we have a change bigger than 10
# we won't be able to see it other than
# it being extra red (aka we won't know if it's +11 or +15)
plot.clim(-10, 10)
file_path = f"{Plotter.PLOTS_DIR}plot{count + 1}.png"
# bbox_inches="tight" remove whitespace around the image
# facecolor=(0.94, 0.94, 0.94) , background color of image
plot.savefig(file_path, dpi=142, bbox_inches="tight", facecolor=(0.94, 0.94, 0.94))
plot.close()
示例9: _signal_recompose_get_wcorr
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def _signal_recompose_get_wcorr(components, show=False):
"""Calculates the weighted correlation matrix for the time series.
References
----------
- https://www.kaggle.com/jdarcy/introducing-ssa-for-time-series-decomposition
"""
# Reorient components
components = components.T
L = components.shape[1]
K = components.shape[0] - L + 1
# Calculate the weights
w = np.array(list(np.arange(L) + 1) + [L] * (K - L - 1) + list(np.arange(L) + 1)[::-1])
def w_inner(F_i, F_j):
return w.dot(F_i * F_j)
# Calculated weighted norms, ||F_i||_w, then invert.
F_wnorms = np.array([w_inner(components[:, i], components[:, i]) for i in range(L)])
F_wnorms = F_wnorms ** -0.5
# Calculate Wcorr.
Wcorr = np.identity(L)
for i in range(L):
for j in range(i + 1, L):
Wcorr[i, j] = abs(w_inner(components[:, i], components[:, j]) * F_wnorms[i] * F_wnorms[j])
Wcorr[j, i] = Wcorr[i, j]
if show is True:
ax = plt.imshow(Wcorr)
plt.xlabel(r"$\tilde{F}_i$")
plt.ylabel(r"$\tilde{F}_j$")
plt.colorbar(ax.colorbar, fraction=0.045)
ax.colorbar.set_label("$W_{i,j}$")
plt.clim(0, 1)
# For plotting purposes:
min_range = 0
max_range = len(Wcorr) - 1
plt.xlim(min_range - 0.5, max_range + 0.5)
plt.ylim(max_range + 0.5, min_range - 0.5)
return Wcorr
# =============================================================================
# Filter method
# =============================================================================
示例10: _plot_debug_slopes_directions
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def _plot_debug_slopes_directions(self):
"""
A debug function to plot the direction calculated in various ways.
"""
# %%
from matplotlib.pyplot import matshow, colorbar, clim, title
matshow(self.direction / np.pi * 180); colorbar(); clim(0, 360)
title('Direction')
mag2, direction2 = self._central_slopes_directions()
matshow(direction2 / np.pi * 180.0); colorbar(); clim(0, 360)
title('Direction (central difference)')
matshow(self.mag); colorbar()
title('Magnitude')
matshow(mag2); colorbar(); title("Magnitude (Central difference)")
# %%
# Compare to Taudem
filename = self.file_name
os.chdir('testtiff')
try:
os.remove('test_ang.tif')
os.remove('test_slp.tif')
except:
pass
cmd = ('dinfflowdir -fel "%s" -ang "%s" -slp "%s"' %
(os.path.split(filename)[-1], 'test_ang.tif', 'test_slp.tif'))
taudem._run(cmd)
td_file = GdalReader(file_name='test_ang.tif')
td_ang, = td_file.raster_layers
td_file2 = GdalReader(file_name='test_slp.tif')
td_mag, = td_file2.raster_layers
os.chdir('..')
matshow(td_ang.raster_data / np.pi*180); clim(0, 360); colorbar()
title('Taudem direction')
matshow(td_mag.raster_data); colorbar()
title('Taudem magnitude')
matshow(self.data); colorbar()
title('The test data (elevation)')
diff = (td_ang.raster_data - self.direction) / np.pi * 180.0
diff[np.abs(diff) > 300] = np.nan
matshow(diff); colorbar(); clim([-1, 1])
title('Taudem direction - calculated Direction')
# normalize magnitudes
mag2 = td_mag.raster_data
mag2 /= np.nanmax(mag2)
mag = self.mag.copy()
mag /= np.nanmax(mag)
matshow(mag - mag2); colorbar()
title('Taudem magnitude - calculated magnitude')
del td_file
del td_file2
del td_ang
del td_mag
示例11: test_derivatives
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def test_derivatives(self):
import chumpy as ch
from chumpy.utils import row
import numpy as np
from .renderer import DepthRenderer
rn = DepthRenderer()
# Assign attributes to renderer
from .util_tests import get_earthmesh
m = get_earthmesh(trans=ch.array([0,0,4]), rotation=ch.zeros(3))
w, h = (320, 240)
from .camera import ProjectPoints
rn.camera = ProjectPoints(v=m.v, rt=ch.zeros(3), t=ch.zeros(3), f=ch.array([w,w])/2., c=ch.array([w,h])/2., k=ch.zeros(5))
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h}
rn.set(v=m.v, f=m.f, bgcolor=ch.zeros(3))
if visualize:
import matplotlib.pyplot as plt
plt.figure()
for which in range(3):
r1 = rn.r
adder = np.zeros(3)
adder[which] = .01
change = rn.v.r * 0 + row(adder)
dr_pred = rn.dr_wrt(rn.v).dot(change.ravel()).reshape(rn.shape)
rn.v = rn.v.r + change
r2 = rn.r
dr_emp = r2 - r1
# print np.mean(np.abs(dr_pred-dr_emp))
self.assertLess(np.mean(np.abs(dr_pred-dr_emp)), .031)
if visualize:
plt.subplot(2,3,which+1)
plt.imshow(dr_pred)
plt.clim(-.01,.01)
plt.title('emp')
plt.subplot(2,3,which+4)
plt.imshow(dr_emp)
plt.clim(-.01,.01)
plt.title('pred')
示例12: test_derivatives2
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def test_derivatives2(self):
import chumpy as ch
import numpy as np
from .renderer import DepthRenderer
rn = DepthRenderer()
# Assign attributes to renderer
from .util_tests import get_earthmesh
m = get_earthmesh(trans=ch.array([0,0,4]), rotation=ch.zeros(3))
w, h = (320, 240)
from .camera import ProjectPoints
rn.camera = ProjectPoints(v=m.v, rt=ch.zeros(3), t=ch.zeros(3), f=ch.array([w,w])/2., c=ch.array([w,h])/2., k=ch.zeros(5))
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h}
rn.set(v=m.v, f=m.f, bgcolor=ch.zeros(3))
if visualize:
import matplotlib.pyplot as plt
plt.ion()
plt.figure()
for which in range(3):
r1 = rn.r
adder = np.random.rand(rn.v.r.size).reshape(rn.v.r.shape)*.01
change = rn.v.r * 0 + adder
dr_pred = rn.dr_wrt(rn.v).dot(change.ravel()).reshape(rn.shape)
rn.v = rn.v.r + change
r2 = rn.r
dr_emp = r2 - r1
#print np.mean(np.abs(dr_pred-dr_emp))
self.assertLess(np.mean(np.abs(dr_pred-dr_emp)), .024)
if visualize:
plt.subplot(2,3,which+1)
plt.imshow(dr_pred)
plt.clim(-.01,.01)
plt.title('emp')
plt.subplot(2,3,which+4)
plt.imshow(dr_emp)
plt.clim(-.01,.01)
plt.title('pred')
plt.draw()
plt.show()
示例13: visualize_tree
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import clim [as 别名]
def visualize_tree(estimator, X, y, boundaries=True,
xlim=None, ylim=None):
estimator.fit(X, y)
if xlim is None:
xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1)
if ylim is None:
ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1)
x_min, x_max = xlim
y_min, y_max = ylim
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100))
Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow')
plt.clim(y.min(), y.max())
# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow')
plt.axis('off')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.clim(y.min(), y.max())
# Plot the decision boundaries
def plot_boundaries(i, xlim, ylim):
if i < 0:
return
tree = estimator.tree_
if tree.feature[i] == 0:
plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k')
plot_boundaries(tree.children_left[i],
[xlim[0], tree.threshold[i]], ylim)
plot_boundaries(tree.children_right[i],
[tree.threshold[i], xlim[1]], ylim)
elif tree.feature[i] == 1:
plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k')
plot_boundaries(tree.children_left[i], xlim,
[ylim[0], tree.threshold[i]])
plot_boundaries(tree.children_right[i], xlim,
[tree.threshold[i], ylim[1]])
if boundaries:
plot_boundaries(0, plt.xlim(), plt.ylim())