本文整理汇总了Python中matplotlib.pyplot.axvspan方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.axvspan方法的具体用法?Python pyplot.axvspan怎么用?Python pyplot.axvspan使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.axvspan方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_axvspan_epoch
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def test_axvspan_epoch():
from datetime import datetime
import matplotlib.testing.jpl_units as units
units.register()
# generate some data
t0 = units.Epoch("ET", dt=datetime(2009, 1, 20))
tf = units.Epoch("ET", dt=datetime(2009, 1, 21))
dt = units.Duration("ET", units.day.convert("sec"))
fig = plt.figure()
plt.axvspan(t0, tf, facecolor="blue", alpha=0.25)
ax = plt.gca()
ax.set_xlim(t0 - 5.0*dt, tf + 5.0*dt)
示例2: on_press
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def on_press(self, event):
'on button press we will see if the mouse is over us and store some data'
if event.button != 3:
# Only continue for right mouse button
return
if self.span is not None:
return
self.start = event.xdata
self.end = event.xdata
self.span = plt.axvspan(self.start, self.end, color='blue', alpha=0.5)
# draw everything but the selected rectangle and store the pixel buffer
canvas = self.figure.canvas
axes = self.span.axes
canvas.draw()
self.background = canvas.copy_from_bbox(self.span.axes.bbox)
# now redraw just the rectangle
axes.draw_artist(self.span)
# and blit just the redrawn area
canvas.blit(axes.bbox)
self.updater.update(self.start, self.end)
示例3: on_motion
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def on_motion(self, event):
'on motion we will move the rect if the mouse is over us'
if self.span is None:
return
self.span.remove()
self.end = event.xdata
self.span = plt.axvspan(self.start, self.end, color='blue', alpha=0.5)
canvas = self.figure.canvas
axes = self.span.axes
# restore the background region
canvas.restore_region(self.background)
# Save the new background
self.background = canvas.copy_from_bbox(self.span.axes.bbox)
# redraw just the current rectangle
axes.draw_artist(self.span)
# blit just the redrawn area
canvas.blit(axes.bbox)
self.updater.update(self.start, self.end)
示例4: test_twinx_knows_limits
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def test_twinx_knows_limits():
fig, ax = plt.subplots()
ax.axvspan(1, 2)
xtwin = ax.twinx()
xtwin.plot([0, 0.5], [1, 2])
# control axis
fig2, ax2 = plt.subplots()
ax2.axvspan(1, 2)
ax2.plot([0, 0.5], [1, 2])
assert_array_equal(xtwin.viewLim.intervalx, ax2.viewLim.intervalx)
示例5: plot_backtest
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def plot_backtest(self, viz=None):
''' param viz: None OR "trades" OR "hodl".
'''
plt.figure(figsize=(15, 8))
plt.plot(self.performance, label="performance")
plt.plot(self.benchmark, label="holding")
if viz == 'trades':
min_y = min(self.performance.min(), self.benchmark.min())
max_y = max(self.performance.max(), self.benchmark.max())
plt.vlines(self.nr_trades['sell'], min_y, max_y, color='red')
plt.vlines(self.nr_trades['buy'], min_y, max_y, color='green')
elif viz == 'hodl':
hodl_periods = []
for i in range(len(self.trades)):
state = self.trades[i - 1] if i > 0 else self.trades[i]
if self.trades[i] and not state:
start = self.strategy_returns.index[i]
elif not self.trades[i] and state:
hodl_periods.append([start, self.strategy_returns.index[i]])
if self.trades[-1]:
hodl_periods.append([start, self.strategy_returns.index[i]])
for hodl_period in hodl_periods:
plt.axvspan(hodl_period[0], hodl_period[1], color='#aeffa8')
plt.legend()
plt.show()
示例6: _periodogram_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def _periodogram_plot(title, column, data, trend, peaks):
"""display periodogram results using matplotlib"""
periods, power = periodogram(data)
plt.figure(1)
plt.subplot(311)
plt.title(title)
plt.plot(data, label=column)
if trend is not None:
plt.plot(trend, linewidth=3, label="broad trend")
plt.legend()
plt.subplot(312)
plt.title("detrended")
plt.plot(data - trend)
else:
plt.legend()
plt.subplot(312)
plt.title("(no detrending specified)")
plt.subplot(313)
plt.title("periodogram")
plt.stem(periods, power)
for peak in peaks:
period, score, pmin, pmax = peak
plt.axvline(period, linestyle='dashed', linewidth=2)
plt.axvspan(pmin, pmax, alpha=0.2, color='b')
plt.annotate("{}".format(period), (period, score * 0.8))
plt.annotate("{}...{}".format(pmin, pmax), (pmin, score * 0.5))
plt.tight_layout()
plt.show()
示例7: crop_recording_window
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def crop_recording_window(self):
self._sample.mspec.spec_stop()
self._sample.mspec.set_averages(1e4)
self._sample.mspec.set_window(0,512)
self._sample.mspec.set_segments(1)
msp = self._sample.mspec.acquire()
def pltfunc(start,end,done):
if done:
self._sample.acqu_window = [start,end]
self._sample.mspec.set_window(start,end)
self._sw.disabled = True
self._ew.disabled = True
self._dw.disabled = True
self._dw.description = "acqu_window set to [{:d}:{:d}]".format(start,end)
else:
plt.figure(figsize=(15,5))
plt.plot(msp)
plt.axvspan(0,start,color='k',alpha=.2)
plt.axvspan(end,len(msp),color='k',alpha=.2)
plt.xlim(0,len(msp))
plt.show()
self._sw = widgets.IntSlider(min=0,max=len(msp),step=1,value=self._sample.acqu_window[0],continuous_update=True)
self._ew = widgets.IntSlider(min=0,max=len(msp),step=1,value=self._sample.acqu_window[1],continuous_update=True)
self._dw = widgets.Checkbox(value=False,description="Done!",indent=True)
self._wgt = widgets.interact(pltfunc,start=self._sw,end=self._ew,done=self._dw)
self._sample.mspec.set_window(*self._sample.acqu_window)
示例8: background_flight_modes
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def background_flight_modes(data):
"""
Overlays a background color for each flight mode. Can be called to style a graph.
"""
import matplotlib.pyplot as plt
modes = np.array(data.STAT_MainState.unique(), np.uint8)
for m in modes:
mode_data = data.STAT_MainState[data.STAT_MainState == m]
mode_name = FLIGHT_MODES[m]
mode_color = FLIGHT_MODE_COLOR[mode_name]
t_min = mode_data.index[0]
t_max = mode_data.index[mode_data.count() - 1]
plt.axvspan(
t_min, t_max, alpha=0.1, color=mode_color,
label=mode_name, zorder=0)
示例9: plots
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def plots(row,
im_title, im, im_mask,
tr_title, tr, tr_mask,
pr_title, r, P0, P2):
# input image
if im is not None:
plt.subplot(3, 4, 4 * row + 1)
plt.title(im_title)
im_masked = np.ma.masked_where(im_mask == 0, im)
plt.imshow(im_masked, cmap='hot')
plt.axis('off')
# transformed image
plt.subplot(3, 4, 4 * row + 2)
plt.title(tr_title)
tr_masked = np.ma.masked_where(tr_mask == 0, tr)
plt.imshow(tr_masked, vmin=-vlim, vmax=vlim, cmap='seismic')
plt.axis('off')
# profiles
plt.subplot(3, 2, 2 * row + 2)
plt.title(pr_title)
plt.axvspan(0, mask_r, color='lightgray') # shade region without valid data
plt.plot(r_src, P0_src, 'C0--', lw=1)
plt.plot(r_src, P2_src, 'C3--', lw=1)
plt.plot(r, P0, 'C0', lw=1, label='$P_0(r)$')
plt.plot(r, P2, 'C3', lw=1, label='$P_2(r)$')
plt.xlim((0, R))
plt.ylim(ylim)
plt.legend()
示例10: segment_changed
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def segment_changed(self, item):
row = item.row()
col = item.column()
seg_name = item.text()
if (item.checkState() == QtCore.Qt.Checked):
start, end = self.segments[seg_name]['chart_offsets']
aspan = plt.axvspan(start, end, color=self.colors[row % len(self.colors)], alpha=0.6)
self.spans[seg_name] = aspan
else:
if seg_name in self.spans.keys():
self.spans[seg_name].remove()
del self.spans[seg_name]
self.canvas.draw()
示例11: cb
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def cb(y, P, counter, current):
solution = np.empty(len(y))
for v, w, f, l in P:
solution[f:f + l] = max(v, 0) / w * g**np.arange(l)
plt.figure(figsize=(3, 3))
color = y.copy()
plt.plot(solution, c='k', zorder=-11, lw=1.2)
plt.scatter(np.arange(len(y)), solution, s=60, cmap=plt.cm.Spectral,
c=color, clip_on=False, zorder=11)
plt.scatter([np.arange(len(y))[current]], [solution[current]],
s=200, lw=2.5, marker='+', color='b', clip_on=False, zorder=11)
for a in P[::2]:
plt.axvspan(a[2], a[2] + a[3], alpha=0.1, color='k', zorder=-11)
for x in np.where(trueSpikes)[0]:
plt.plot([x, x], [0, 1.65], lw=1.5, c='r', zorder=-12)
plt.xlim((0, len(y) - .5))
plt.ylim((0, 1.65))
simpleaxis(plt.gca())
plt.xticks([])
plt.yticks([])
if save_figs:
plt.savefig('fig/%d.pdf' % counter)
plt.show()
# generate data
示例12: advanced_10a_digital_output_shading
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def advanced_10a_digital_output_shading(self):
"""
## Shading Epochs
In this ABF digital output 4 is high during epoch C. Let's highlight
this by plotting sweeps and shading that epoch.
`print(abf.epochPoints)` yields `[0, 3125, 7125, 23125, 23145, 200000]`
and I know the epoch I'm interested in is bound by index 3 and 4.
"""
import pyabf
abf = pyabf.ABF("data/abfs/17o05026_vc_stim.abf")
plt.figure(figsize=self.figsize)
for sweepNumber in abf.sweepList:
abf.setSweep(sweepNumber)
plt.plot(abf.sweepX, abf.sweepY, color='C0', alpha=.5, lw=.5)
plt.ylabel(abf.sweepLabelY)
plt.xlabel(abf.sweepLabelX)
plt.title("Shade a Specific Epoch")
plt.axis([1.10, 1.25, -150, 50])
epochNumber = 3
t1 = abf.sweepEpochs.p1s[epochNumber] * abf.dataSecPerPoint
t2 = abf.sweepEpochs.p2s[epochNumber] * abf.dataSecPerPoint
plt.axvspan(t1, t2, color='r', alpha=.3, lw=0)
plt.grid(alpha=.2)
self.saveAndClose()
示例13: plot_labels
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def plot_labels(all_labels, gt_times, est_file, algo_ids=None, title=None,
output_file=None):
"""Plots all the labels.
Parameters
----------
all_labels: list
A list of np.arrays containing the labels of the boundaries, one array
for each algorithm.
gt_times: np.array
Array with the ground truth boundaries.
est_file: str
Path to the estimated file (JSON file)
algo_ids : list
List of algorithm ids to to read boundaries from.
If None, all algorithm ids are read.
title : str
Title of the plot. If None, the name of the file is printed instead.
"""
import matplotlib.pyplot as plt
N = len(all_labels) # Number of lists of labels
if algo_ids is None:
algo_ids = io.get_algo_ids(est_file)
# Translate ids
for i, algo_id in enumerate(algo_ids):
algo_ids[i] = translate_ids[algo_id]
algo_ids = ["GT"] + algo_ids
# Index the labels to normalize them
for i, labels in enumerate(all_labels):
all_labels[i] = mir_eval.util.index_labels(labels)[0]
# Get color map
cm = plt.get_cmap('gist_rainbow')
max_label = max(max(labels) for labels in all_labels)
# To intervals
gt_inters = utils.times_to_intervals(gt_times)
# Plot labels
figsize = (6, 4)
plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
for i, labels in enumerate(all_labels):
for label, inter in zip(labels, gt_inters):
plt.axvspan(inter[0], inter[1], ymin=i / float(N),
ymax=(i + 1) / float(N), alpha=0.6,
color=cm(label / float(max_label)))
plt.axhline(i / float(N), color="k", linewidth=1)
# Draw the boundary lines
for bound in gt_times:
plt.axvline(bound, color="g")
# Format plot
_plot_formatting(title, est_file, algo_ids, gt_times[-1], N,
output_file)
示例14: plot_one_track
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def plot_one_track(file_struct, est_times, est_labels, boundaries_id, labels_id,
title=None):
"""Plots the results of one track, with ground truth if it exists."""
import matplotlib.pyplot as plt
# Set up the boundaries id
bid_lid = boundaries_id
if labels_id is not None:
bid_lid += " + " + labels_id
try:
# Read file
jam = jams.load(file_struct.ref_file)
ann = jam.search(namespace='segment_.*')[0]
ref_inters, ref_labels = ann.to_interval_values()
# To times
ref_times = utils.intervals_to_times(ref_inters)
all_boundaries = [ref_times, est_times]
all_labels = [ref_labels, est_labels]
algo_ids = ["GT", bid_lid]
except:
logging.warning("No references found in %s. Not plotting groundtruth"
% file_struct.ref_file)
all_boundaries = [est_times]
all_labels = [est_labels]
algo_ids = [bid_lid]
N = len(all_boundaries)
# Index the labels to normalize them
for i, labels in enumerate(all_labels):
all_labels[i] = mir_eval.util.index_labels(labels)[0]
# Get color map
cm = plt.get_cmap('gist_rainbow')
max_label = max(max(labels) for labels in all_labels)
figsize = (8, 4)
plt.figure(1, figsize=figsize, dpi=120, facecolor='w', edgecolor='k')
for i, boundaries in enumerate(all_boundaries):
color = "b"
if i == 0:
color = "g"
for b in boundaries:
plt.axvline(b, i / float(N), (i + 1) / float(N), color=color)
if labels_id is not None:
labels = all_labels[i]
inters = utils.times_to_intervals(boundaries)
for label, inter in zip(labels, inters):
plt.axvspan(inter[0], inter[1], ymin=i / float(N),
ymax=(i + 1) / float(N), alpha=0.6,
color=cm(label / float(max_label)))
plt.axhline(i / float(N), color="k", linewidth=1)
# Format plot
_plot_formatting(title, os.path.basename(file_struct.audio_file), algo_ids,
all_boundaries[0][-1], N, None)
示例15: plot_tree
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axvspan [as 别名]
def plot_tree(T, res=None, title=None, cmap_id="Pastel2"):
"""Plots a given tree, containing hierarchical segmentation.
Parameters
----------
T: mir_eval.segment.tree
A tree object containing the hierarchical segmentation.
res: float
Frame-rate resolution of the tree (None to use seconds).
title: str
Title for the plot. `None` for no title.
cmap_id: str
Color Map ID
"""
import matplotlib.pyplot as plt
def round_time(t, res=0.1):
v = int(t / float(res)) * res
return v
# Get color map
cmap = plt.get_cmap(cmap_id)
# Get segments by level
level_bounds = []
for level in T.levels:
if level == "root":
continue
segments = T.get_segments_in_level(level)
level_bounds.append(segments)
# Plot axvspans for each segment
B = float(len(level_bounds))
#plt.figure(figsize=figsize)
for i, segments in enumerate(level_bounds):
labels = utils.segment_labels_to_floats(segments)
for segment, label in zip(segments, labels):
#print i, label, cmap(label)
if res is None:
start = segment.start
end = segment.end
xlabel = "Time (seconds)"
else:
start = int(round_time(segment.start, res=res) / res)
end = int(round_time(segment.end, res=res) / res)
xlabel = "Time (frames)"
plt.axvspan(start, end,
ymax=(len(level_bounds) - i) / B,
ymin=(len(level_bounds) - i - 1) / B,
facecolor=cmap(label))
# Plot labels
L = float(len(T.levels) - 1)
plt.yticks(np.linspace(0, (L - 1) / L, num=L) + 1 / L / 2.,
T.levels[1:][::-1])
plt.xlabel(xlabel)
if title is not None:
plt.title(title)
plt.gca().set_xlim([0, end])