当前位置: 首页>>代码示例>>Python>>正文


Python pyplot.axis方法代码示例

本文整理汇总了Python中matplotlib.pyplot.axis方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.axis方法的具体用法?Python pyplot.axis怎么用?Python pyplot.axis使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pyplot的用法示例。


在下文中一共展示了pyplot.axis方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: demo_plot

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def demo_plot():
    audio = './data/esc10/audio/Dog/1-30226-A.ogg'
    y, sr = librosa.load(audio, sr=44100)
    y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6)   # n_steps控制音调变化尺度
    y_ts = librosa.effects.time_stretch(y, rate=1.2)   # rate控制时间维度的变换尺度
    plt.subplot(311)
    plt.plot(y)
    plt.title('Original waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    # plt.axis([88000, 94000, -0.4, 0.4])
    plt.subplot(312)
    plt.plot(y_ts)
    plt.title('Time Stretch transformed waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    plt.subplot(313)
    plt.plot(y_ps)
    plt.title('Pitch Shift transformed waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    # plt.axis([88000, 94000, -0.4, 0.4])
    plt.tight_layout()
    plt.show() 
开发者ID:JasonZhang156,项目名称:Sound-Recognition-Tutorial,代码行数:23,代码来源:data_augmentation.py

示例2: plot_confusion_matrix

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
    """plot_confusion_matrix."""
    cm = confusion_matrix(y_true, y_pred)
    fmt = "%d"
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        fmt = "%.2f"
    xticklabels = list(sorted(set(y_pred)))
    yticklabels = list(sorted(set(y_true)))
    if size is not None:
        plt.figure(figsize=(size, size))
    heatmap(cm, xlabel='Predicted label', ylabel='True label',
            xticklabels=xticklabels, yticklabels=yticklabels,
            cmap=plt.cm.Blues, fmt=fmt)
    if normalize:
        plt.title("Confusion matrix (norm.)")
    else:
        plt.title("Confusion matrix")
    plt.gca().invert_yaxis() 
开发者ID:fabriziocosta,项目名称:EDeN,代码行数:21,代码来源:__init__.py

示例3: save_frames

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def save_frames(images, filename):
    num_sequences, n_steps, w, h = images.shape

    fig = plt.figure()
    im = plt.imshow(combine_multiple_img(images[:, 0]), cmap=plt.cm.get_cmap('Greys'), interpolation='none')
    plt.axis('image')

    def updatefig(*args):
        im.set_array(combine_multiple_img(images[:, args[0]]))
        return im,

    ani = animation.FuncAnimation(fig, updatefig, interval=500, frames=n_steps)

    # Either avconv or ffmpeg need to be installed in the system to produce the videos!
    try:
        writer = animation.writers['avconv']
    except KeyError:
        writer = animation.writers['ffmpeg']
    writer = writer(fps=3)
    ani.save(filename, writer=writer)
    plt.close(fig) 
开发者ID:simonkamronn,项目名称:kvae,代码行数:23,代码来源:movie.py

示例4: plot_roc_curve

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
开发者ID:fabriziocosta,项目名称:EDeN,代码行数:18,代码来源:__init__.py

示例5: plot_num_recall

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_num_recall(recalls, proposal_nums):
    """Plot Proposal_num-Recalls curve.

    Args:
        recalls(ndarray or list): shape (k,)
        proposal_nums(ndarray or list): same shape as `recalls`
    """
    if isinstance(proposal_nums, np.ndarray):
        _proposal_nums = proposal_nums.tolist()
    else:
        _proposal_nums = proposal_nums
    if isinstance(recalls, np.ndarray):
        _recalls = recalls.tolist()
    else:
        _recalls = recalls

    import matplotlib.pyplot as plt
    f = plt.figure()
    plt.plot([0] + _proposal_nums, [0] + _recalls)
    plt.xlabel('Proposal num')
    plt.ylabel('Recall')
    plt.axis([0, proposal_nums.max(), 0, 1])
    f.show() 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:25,代码来源:recall.py

示例6: plot_iou_recall

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_iou_recall(recalls, iou_thrs):
    """Plot IoU-Recalls curve.

    Args:
        recalls(ndarray or list): shape (k,)
        iou_thrs(ndarray or list): same shape as `recalls`
    """
    if isinstance(iou_thrs, np.ndarray):
        _iou_thrs = iou_thrs.tolist()
    else:
        _iou_thrs = iou_thrs
    if isinstance(recalls, np.ndarray):
        _recalls = recalls.tolist()
    else:
        _recalls = recalls

    import matplotlib.pyplot as plt
    f = plt.figure()
    plt.plot(_iou_thrs + [1.0], _recalls + [0.])
    plt.xlabel('IoU')
    plt.ylabel('Recall')
    plt.axis([iou_thrs.min(), 1, 0, 1])
    f.show() 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:25,代码来源:recall.py

示例7: plot_time_series

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0,
                     color='r', title=None):

  if bidx is None:
    vals_txn = np.mean(vals_bxtxn, axis=0)
  else:
    vals_txn = vals_bxtxn[bidx,:,:]

  T, N = vals_txn.shape
  if n_to_plot > N:
    n_to_plot = N

  plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)),
           color=color, lw=1.0)
  plt.axis('tight')
  if title:
    plt.title(title) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:plot_lfads.py

示例8: adjacencyToLaplacian

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def adjacencyToLaplacian(W):
    """
    adjacencyToLaplacian: Computes the Laplacian from an Adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        L (np.array): Laplacian matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # And build the degree matrix
    D = np.diag(d)
    # Return the Laplacian
    return D - W 
开发者ID:alelab-upenn,项目名称:graph-neural-networks,代码行数:22,代码来源:graphTools.py

示例9: normalizeAdjacency

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def normalizeAdjacency(W):
    """
    NormalizeAdjacency: Computes the degree-normalized adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        A (np.array): degree-normalized adjacency matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # Invert the square root of the degree
    d = 1/np.sqrt(d)
    # And build the square root inverse degree matrix
    D = np.diag(d)
    # Return the Normalized Adjacency
    return D @ W @ D 
开发者ID:alelab-upenn,项目名称:graph-neural-networks,代码行数:24,代码来源:graphTools.py

示例10: print_mutation

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def print_mutation(hyp, results, bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        os.system('gsutil cp gs://%s/evolve.txt .' % bucket)  # download evolve.txt

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g')  # save sort by fitness

    if bucket:
        os.system('gsutil cp evolve.txt gs://%s' % bucket)  # upload evolve.txt 
开发者ID:zbyuan,项目名称:pruning_yolov3,代码行数:19,代码来源:utils.py

示例11: plot_images

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
    # Plots training images overlaid with targets
    imgs = imgs.cpu().numpy()
    targets = targets.cpu().numpy()
    # targets = targets[targets[:, 1] == 21]  # plot only one class

    fig = plt.figure(figsize=(10, 10))
    bs, _, h, w = imgs.shape  # batch size, _, height, width
    bs = min(bs, 16)  # limit plot to 16 images
    ns = np.ceil(bs ** 0.5)  # number of subplots

    for i in range(bs):
        boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
        boxes[[0, 2]] *= w
        boxes[[1, 3]] *= h
        plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
        plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
        plt.axis('off')
        if paths is not None:
            s = Path(paths[i]).name
            plt.title(s[:min(len(s), 40)], fontdict={'size': 8})  # limit to 40 characters
    fig.tight_layout()
    fig.savefig(fname, dpi=200)
    plt.close() 
开发者ID:zbyuan,项目名称:pruning_yolov3,代码行数:26,代码来源:utils.py

示例12: get_mnist_data

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def get_mnist_data(binarize=False):
    """Puts the MNIST data in the right format."""

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    if binarize:
        X_test = np.where(X_test >= 10, 1, -1)
        X_train = np.where(X_train >= 10, 1, -1)
    else:
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_test = (X_test.astype(np.float32) - 127.5) / 127.5

    X_train = np.expand_dims(X_train, axis=-1)
    X_test = np.expand_dims(X_test, axis=-1)

    y_train = np.expand_dims(y_train, axis=-1)
    y_test = np.expand_dims(y_test, axis=-1)

    return (X_train, y_train), (X_test, y_test) 
开发者ID:codekansas,项目名称:gandlf,代码行数:21,代码来源:mnist_gan.py

示例13: test

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def test(self):

        list_ = os.listdir("./maps/val/")
        nums_file = list_.__len__()
        saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
        saver.restore(self.sess, "./save_para/model.ckpt")
        rand_select = np.random.randint(0, nums_file)
        INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3])
        INPUTS = np.zeros([1, self.img_h, self.img_w, 3])
        img = np.array(Image.open(self.path + list_[rand_select]))
        img_h, img_w = img.shape[0], img.shape[1]
        INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0
        INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0
        [fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION})
        out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1)
        Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg")
        plt.imshow(np.uint8((out_img + 1.0)*127.5))
        plt.grid("off")
        plt.axis("off")
        plt.show() 
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:22,代码来源:test.py

示例14: generator

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def generator(self, inputs_condition):
        inputs = inputs_condition
        with tf.variable_scope("generator", reuse=tf.AUTO_REUSE):
            inputs1 = leaky_relu(conv2d("conv1", inputs, 64, 5, 2))#128x128x128
            inputs2 = leaky_relu(instanceNorm("in1", conv2d("conv2", inputs1, 128, 5, 2)))#64x64x256
            inputs3 = leaky_relu(instanceNorm("in2", conv2d("conv3", inputs2, 256, 5, 2)))#32x32x512
            inputs4 = leaky_relu(instanceNorm("in3", conv2d("conv4", inputs3, 512, 5, 2)))#16x16x512
            inputs5 = leaky_relu(instanceNorm("in4", conv2d("conv5", inputs4, 512, 5, 2)))#8x8x512
            inputs6 = leaky_relu(instanceNorm("in5", conv2d("conv6", inputs5, 512, 5, 2)))#4x4x512
            inputs7 = leaky_relu(instanceNorm("in6", conv2d("conv7", inputs6, 512, 5, 2)))#2x2x512
            inputs8 = leaky_relu(instanceNorm("in7", conv2d("conv8", inputs7, 512, 5, 2)))#1x1x512
            outputs1 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in9", deconv2d("dconv1", inputs8, 512, 5, 2)), 0.5), inputs7], axis=3))  # 2x2x512
            outputs2 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in10", deconv2d("dconv2", outputs1, 512, 5, 2)), 0.5), inputs6], axis=3))  # 4x4x512
            outputs3 = tf.nn.relu(tf.concat([tf.nn.dropout(instanceNorm("in11", deconv2d("dconv3", outputs2, 512, 5, 2)), 0.5), inputs5], axis=3))#8x8x512
            outputs4 = tf.nn.relu(tf.concat([instanceNorm("in12", deconv2d("dconv4", outputs3, 512, 5, 2)), inputs4], axis=3))#16x16x512
            outputs5 = tf.nn.relu(tf.concat([instanceNorm("in13", deconv2d("dconv5", outputs4, 256, 5, 2)), inputs3], axis=3))#32x32x256
            outputs6 = tf.nn.relu(tf.concat([instanceNorm("in14", deconv2d("dconv6", outputs5, 128, 5, 2)), inputs2], axis=3))#64x64x128
            outputs7 = tf.nn.relu(tf.concat([instanceNorm("in15", deconv2d("dconv7", outputs6, 64, 5, 2)), inputs1], axis=3))#128x128x64
            outputs8 = tf.nn.tanh((deconv2d("dconv8", outputs7, 3, 5, 2)))#256x256x3
            return outputs8 
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:22,代码来源:test.py

示例15: _demo_plot

# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import axis [as 别名]
def _demo_plot(learning_curve_output, teststats, trainstats=None, take=None):
   testcurve = [teststats['initialerrors']]
   for rulescore in teststats['rulescores']:
       testcurve.append(testcurve[-1] - rulescore)
   testcurve = [1 - x/teststats['tokencount'] for x in testcurve[:take]]

   traincurve = [trainstats['initialerrors']]
   for rulescore in trainstats['rulescores']:
       traincurve.append(traincurve[-1] - rulescore)
   traincurve = [1 - x/trainstats['tokencount'] for x in traincurve[:take]]

   import matplotlib.pyplot as plt
   r = list(range(len(testcurve)))
   plt.plot(r, testcurve, r, traincurve)
   plt.axis([None, None, None, 1.0])
   plt.savefig(learning_curve_output) 
开发者ID:rafasashi,项目名称:razzy-spinner,代码行数:18,代码来源:demo.py


注:本文中的matplotlib.pyplot.axis方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。