本文整理汇总了Python中matplotlib.pyplot.annotate方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.annotate方法的具体用法?Python pyplot.annotate怎么用?Python pyplot.annotate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.annotate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: visualize_2D_trip
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def visualize_2D_trip(self,trip,tw_open,tw_close):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
colors = ['red'] # Depot is first city
for i in range(len(tw_open)-1):
colors.append('blue')
plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with TW
tw_open = np.rint(tw_open)
tw_close = np.rint(tw_close)
time_window = np.concatenate((tw_open,tw_close),axis=1)
for tw, (x, y) in zip(time_window,(zip(X,Y))):
plt.annotate(tw,xy=(x, y))
plt.xlim(0,60)
plt.ylim(0,60)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例2: visualize_2D_trip
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def visualize_2D_trip(self, trip):
plt.figure(figsize=(30,30))
rcParams.update({'font.size': 22})
# Plot cities
plt.scatter(trip[:,0], trip[:,1], s=200)
# Plot tour
tour=np.array(list(range(len(trip))) + [0])
X = trip[tour, 0]
Y = trip[tour, 1]
plt.plot(X, Y,"--", markersize=100)
# Annotate cities with order
labels = range(len(trip))
for i, (x, y) in zip(labels,(zip(X,Y))):
plt.annotate(i,xy=(x, y))
plt.xlim(0,100)
plt.ylim(0,100)
plt.show()
# Heatmap of permutations (x=cities; y=steps)
示例3: plot_ours_mean
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot_ours_mean(measures_readers, metric, color, show_ids):
if not show_ids:
show_ids = []
ops = []
for first, measures_reader in flag_first_iter(measures_readers):
this_op_bpps = []
this_op_values = []
for img_name, bpp, value in measures_reader.iter_metric(metric):
this_op_bpps.append(bpp)
this_op_values.append(value)
ours_mean_bpp, ours_mean_value = np.mean(this_op_bpps), np.mean(this_op_values)
ops.append((ours_mean_bpp, ours_mean_value))
plt.scatter(ours_mean_bpp, ours_mean_value, marker='x', zorder=10, color=color,
label='Ours' if first else None)
for (bpp, value), job_id in zip(sorted(ops), show_ids):
plt.annotate(job_id, (bpp + 0.04, value),
horizontalalignment='bottom', verticalalignment='center')
示例4: plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot(self, line_width=1, point_radius=math.sqrt(2.0), annotation_size=8, dpi=120, save=True, name=None):
x = [self.nodes[i][0] for i in self.global_best_tour]
x.append(x[0])
y = [self.nodes[i][1] for i in self.global_best_tour]
y.append(y[0])
plt.plot(x, y, linewidth=line_width)
plt.scatter(x, y, s=math.pi * (point_radius ** 2.0))
plt.title(self.mode)
for i in self.global_best_tour:
plt.annotate(self.labels[i], self.nodes[i], size=annotation_size)
if save:
if name is None:
name = '{0}.png'.format(self.mode)
plt.savefig(name, dpi=dpi)
plt.show()
plt.gcf().clear()
示例5: drawComplex
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def drawComplex(data, ph, axes=[-6, 8, -6, 6]):
plt.clf()
plt.axis(axes) # axes = [x1, x2, y1, y2]
plt.scatter(data[:, 0], data[:, 1]) # plotting just for clarity
for i, txt in enumerate(data):
plt.annotate(i, (data[i][0] + 0.05, data[i][1])) # add labels
# add lines for edges
for edge in [e for e in ph.ripsComplex if len(e) == 2]:
# print(edge)
pt1, pt2 = [data[pt] for pt in [n for n in edge]]
# plt.gca().add_line(plt.Line2D(pt1,pt2))
line = plt.Polygon([pt1, pt2], closed=None, fill=None, edgecolor='r')
plt.gca().add_line(line)
# add triangles
for triangle in [t for t in ph.ripsComplex if len(t) == 3]:
pt1, pt2, pt3 = [data[pt] for pt in [n for n in triangle]]
line = plt.Polygon([pt1, pt2, pt3], closed=False,
color="blue", alpha=0.3, fill=True, edgecolor=None)
plt.gca().add_line(line)
plt.show()
示例6: drawComplex
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def drawComplex(origData, ripsComplex, axes=[-6,8,-6,6]):
plt.clf()
plt.axis(axes)
plt.scatter(origData[:,0],origData[:,1]) #plotting just for clarity
for i, txt in enumerate(origData):
plt.annotate(i, (origData[i][0]+0.05, origData[i][1])) #add labels
#add lines for edges
for edge in [e for e in ripsComplex if len(e)==2]:
#print(edge)
pt1,pt2 = [origData[pt] for pt in [n for n in edge]]
#plt.gca().add_line(plt.Line2D(pt1,pt2))
line = plt.Polygon([pt1,pt2], closed=None, fill=None, edgecolor='r')
plt.gca().add_line(line)
#add triangles
for triangle in [t for t in ripsComplex if len(t)==3]:
pt1,pt2,pt3 = [origData[pt] for pt in [n for n in triangle]]
line = plt.Polygon([pt1,pt2,pt3], closed=False, color="blue",alpha=0.3, fill=True, edgecolor=None)
plt.gca().add_line(line)
plt.show()
示例7: projection
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def projection(embeddings, token_list):
for k in range(6):
embeddings=np.concatenate((embeddings, embeddings), axis=0)
proj = PCA(embeddings)
PCA_proj=proj.Y
print PCA_proj.shape
#plotting words within the 2D space of the two principal components:
list=token_list[0]
for n in range(maxlen):
plt.plot(PCA_proj[n][0]+1,PCA_proj[n][1], 'w.')
plt.annotate(list[n], xy=(PCA_proj[n][0],PCA_proj[n][1]), xytext=(PCA_proj[n][0],PCA_proj[n][1]))
plt.show()
plt.ishold()
return
开发者ID:oswaldoludwig,项目名称:visually-informed-embedding-of-word-VIEW-,代码行数:21,代码来源:PCA_projection_1.01.py
示例8: main
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def main():
args = parse_args()
X, labels = np.loadtxt(args.embeddings_path), np.loadtxt(args.labels_path, dtype=np.str)
tsne = TSNE(n_components=2, n_iter=10000, perplexity=5, init='pca', learning_rate=200, verbose=1)
transformed = tsne.fit_transform(X)
y = set(labels)
labels = np.array(labels)
plt.figure(figsize=(20, 14))
colors = cm.rainbow(np.linspace(0, 1, len(y)))
for label, color in zip(y, colors):
points = transformed[labels == label, :]
plt.scatter(points[:, 0], points[:, 1], c=[color], label=label, s=200, alpha=0.5)
for p1, p2 in random.sample(list(zip(points[:, 0], points[:, 1])), k=min(1, len(points))):
plt.annotate(label, (p1, p2), fontsize=30)
plt.savefig('tsne_visualization.png', transparent=True, bbox_inches='tight', pad_inches=0)
plt.show()
示例9: plot_embedding
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot_embedding(embedding, annotation=None, filename='outputs/embedding.png'):
reduced = TSNE(n_components=2).fit_transform(embedding)
plt.figure(figsize=(20, 20))
max_x = np.amax(reduced, axis=0)[0]
max_y = np.amax(reduced, axis=0)[1]
plt.xlim((-max_x, max_x))
plt.ylim((-max_y, max_y))
plt.scatter(reduced[:, 0], reduced[:, 1], s=20, c=["r"] + ["b"] * (len(reduced) - 1))
# Annotation
if annotation:
for i in range(embedding.shape[0]):
target = annotation[i]
x = reduced[i, 0]
y = reduced[i, 1]
plt.annotate(target, (x, y))
plt.savefig(filename)
# plt.show()
示例10: plot_accuracies
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot_accuracies(train_accuracies, dev_accuracies,opts):
plt.figure(figsize=(6,4))
plt.title(r"Learning Curve Accuracies of %s on train/dev set" % opts.model)
plt.xlabel("SGD Iterations");plt.ylabel(r"Accuracy");
plt.ylim(ymin=min(min(train_accuracies)*0.8, min(dev_accuracies)*0.8),ymax=max(1.2*max(train_accuracies), 1.2*max(dev_accuracies)))
plt.plot(np.arange(opts.epochs),train_accuracies, color='b', marker='o', linestyle='-')
plt.annotate("train curve",xy=(1,train_accuracies[1]),
xytext=(1,train_accuracies[1]+0.3),
arrowprops=dict(facecolor='green'),
horizontalalignment='left',verticalalignment='top')
plt.plot(np.arange(opts.epochs),dev_accuracies, color='r', marker='o', linestyle='-')
plt.annotate("dev curve",xy=(45,dev_accuracies[45]),
xytext=(45,dev_accuracies[45]+0.3),
arrowprops=dict(facecolor='red'),
horizontalalignment='left',verticalalignment='top')
plt.savefig("./figures/%s/%s_learningCurve_on_train_dev_set_%d_epochs.png" % (opts.model,opts.model,opts.epochs))
plt.show()
plt.close()
示例11: plot_cost
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot_cost(train_cost, dev_cost,opts):
plt.figure(figsize=(6,4))
plt.title(r"Learning Curve Cost of %s on train/dev set" % opts.model)
plt.xlabel("SGD Iterations");plt.ylabel(r"Cost");
plt.ylim(ymin=min(min(train_cost)*0.8, min(dev_cost)*0.8),ymax=max(1.2*max(train_cost), 1.2*max(dev_cost)))
plt.plot(np.arange(opts.epochs),train_cost, color='b', marker='o', linestyle='-')
plt.annotate("train curve",xy=(1,train_cost[1]),
xytext=(1,train_cost[1]+3),
arrowprops=dict(facecolor='green'),
horizontalalignment='left',verticalalignment='top')
plt.plot(np.arange(opts.epochs),dev_cost, color='r', marker='o', linestyle='-')
plt.annotate("dev curve",xy=(45,dev_cost[45]),
xytext=(45,dev_cost[45]+3),
arrowprops=dict(facecolor='red'),
horizontalalignment='left',verticalalignment='top')
plt.savefig("./figures/%s/%s_learningCurveCost_on_train_dev_set_%d_epochs.png" % (opts.model,opts.model,opts.epochs))
plt.show()
plt.close()
示例12: plot_cost_acc
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def plot_cost_acc(a, b, figname, epochs):
annotate_size = 0.15
if figname.startswith('Cost') == True:
annotate_size *= 30
plt.figure(figsize=(6,4))
plt.title(figname)
plt.xlabel("SGD Iterations");plt.ylabel(r"Accuracy or Cost")
plt.ylim(ymin=min(min(a),min(b))*0.8,ymax=max(max(a),max(b))*1.2)
plt.plot(np.arange(epochs),a,'bo-')
plt.annotate("train_curve", xy=(1,a[1]),
xytext=(1,a[1]+annotate_size),
arrowprops=dict(facecolor='green'),
horizontalalignment='left',verticalalignment='top')
plt.plot(np.arange(epochs),b,'ro-')
plt.annotate("dev_curve",xy=(50,b[50]),
xytext=(50,b[50]+annotate_size),
arrowprops=dict(facecolor='red'),
horizontalalignment='left',verticalalignment='top')
plt.savefig("%s_per_epochs.png"%figname)
plt.close()
示例13: annotate_frequency_axis
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def annotate_frequency_axis(mark_freq, label_position_y=1, arrow_length=3, log_y=False, freq_range=None):#{{{
"""
"""
import matplotlib.pyplot as plt
if type(mark_freq) in (float,int): mark_freq=list(mark_freq,)
if type(mark_freq) in (list,tuple): mark_freq=dict(zip(mark_freq,['' for mf in mark_freq]))
for mfreq, mfreqtxt in mark_freq.items():
label_y2 = label_position_y
while (mfreqtxt[0:1]==' ' and mfreqtxt[-2:-1]==' '):
label_y2 = label_y2*2 if log_y else label_y2+1
mfreqtxt=mfreqtxt[1:-1];
bboxprops = dict(boxstyle='round, pad=.15', fc='white', alpha=1, lw=0)
arrowprops = dict(arrowstyle=('->', '-|>', 'simple', 'fancy')[0], connectionstyle = 'arc3,rad=0', lw=1, ec='k', fc='w')
if not freq_range or (mfreq > freq_range[0] and mfreq < freq_range[1]):
plt.annotate(mfreqtxt, clip_on=True,
xy = (mfreq, label_y2), xycoords ='data',
# (delete following line if text without arrow is used)
xytext = (mfreq, label_y2*arrow_length if log_y else label_y+arrow_length), textcoords='data',
ha='center', va='bottom', size=15, color='k',
bbox = bboxprops, # comment out to disable bounding box
arrowprops = arrowprops, # comment out to disable arrow
)
#}}}
示例14: visualize_joints_2d
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def visualize_joints_2d(
ax, joints, joint_idxs=True, links=None, alpha=1, scatter=True, linewidth=2
):
if links is None:
links = [
(0, 1, 2, 3, 4),
(0, 5, 6, 7, 8),
(0, 9, 10, 11, 12),
(0, 13, 14, 15, 16),
(0, 17, 18, 19, 20),
]
# Scatter hand joints on image
x = joints[:, 0]
y = joints[:, 1]
if scatter:
ax.scatter(x, y, 1, "r")
# Add idx labels to joints
for row_idx, row in enumerate(joints):
if joint_idxs:
plt.annotate(str(row_idx), (row[0], row[1]))
_draw2djoints(ax, joints, links, alpha=alpha, linewidth=linewidth)
ax.axis("equal")
示例15: main
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import annotate [as 别名]
def main():
train_date = None
tickers, periods, targets = parse_command_line(default_tickers=['BTC_ETH', 'BTC_LTC'],
default_periods=['day'],
default_targets=['high'])
for ticker in tickers:
for period in periods:
for target in targets:
job = JobInfo('_data', '_zoo', name='%s_%s' % (ticker, period), target=target)
result_df = predict_multiple(job, raw_df=read_df(job.get_source_name()), rows_to_predict=120)
result_df.index.names = ['']
result_df.plot(title=job.name)
if train_date is not None:
x = train_date
y = result_df['True'].min()
plt.axvline(x, color='k', linestyle='--')
plt.annotate('Training stop', xy=(x, y), xytext=(result_df.index.min(), y), color='k',
arrowprops={'arrowstyle': '->', 'connectionstyle': 'arc3', 'color': 'k'})
plt.show()