本文整理汇总了Python中matplotlib.pyplot.Subplot方法的典型用法代码示例。如果您正苦于以下问题:Python pyplot.Subplot方法的具体用法?Python pyplot.Subplot怎么用?Python pyplot.Subplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pyplot
的用法示例。
在下文中一共展示了pyplot.Subplot方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_prediction
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def plot_prediction(pixels, model, data_encoder):
fig = plt.figure()
inner = gridspec.GridSpec(2, 1, wspace=0.05, hspace=0, height_ratios=[5, 1.2])
image_ax = plt.Subplot(fig, inner[0])
labels_ax = plt.Subplot(fig, inner[1])
predicted_labels = model.predict(np.array([pixels]), batch_size=1)
character_name_to_probability = data_encoder.one_hot_decode(predicted_labels[0].astype(np.float64))
top_character_probability = sorted(character_name_to_probability.items(),
key=lambda item_tup: item_tup[1],
reverse=True)[:3]
top_character_names, top_character_probabilities = zip(*top_character_probability)
character_idx = data_encoder.one_hot_index(top_character_names[0])
plot_row_item(image_ax, labels_ax, pixels, top_character_names, top_character_probabilities)
fig.add_subplot(image_ax)
fig.add_subplot(labels_ax)
return fig
示例2: setup_grid
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def setup_grid():
fig = plt.figure(figsize=(8,3.8))
gs0 = gridspec.GridSpec(1, 2)
gs00 = gridspec.GridSpecFromSubplotSpec(4, 1, subplot_spec=gs0[0], hspace=0)
ax1 = plt.Subplot(fig, gs00[:-1, :])
ax1.set(xlabel='', xticks=[], ylabel='Flux')
fig.add_subplot(ax1)
ax2 = plt.Subplot(fig, gs00[-1, :])
ax2.set(xlabel='Phase', ylabel='Res.')
fig.add_subplot(ax2)
gs01 = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs0[1])
ax3 = plt.Subplot(fig, gs01[:, :])
ax3.set(xlabel='Long. (deg)', ylabel='Lat. (deg.)')
fig.add_subplot(ax3)
plt.tight_layout()
return fig, ax1, ax2, ax3
示例3: make_cam_plot
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def make_cam_plot(model, weight, image_path, cam_path, data_generator):
path_head, npz_name = os.path.split(image_path)
_, character_name = os.path.split(path_head)
model_name = os.path.basename(os.path.dirname(weight))
character_idx = data_generator.encoder.one_hot_index(character_name)
cam = cam_weighted_image(model, image_path, character_idx)
fig = plt.figure()
inner = gridspec.GridSpec(2, 1, wspace=0.05, hspace=0, height_ratios=[5, 1.2])
image_ax = plt.Subplot(fig, inner[0])
labels_ax = plt.Subplot(fig, inner[1])
character_name_to_probability = get_model_predictions_for_npz(model,
data_generator,
character_name,
npz_name)
top_character_probability = sorted(character_name_to_probability.items(),
key=lambda item_tup: item_tup[1],
reverse=True)[:3]
top_character_names, top_character_probabilities = zip(*top_character_probability)
plot_row_item(image_ax, labels_ax, cam, top_character_names, top_character_probabilities)
weight_idx = os.path.basename(weight).split('.')[1]
labels_ax.set_xlabel(npz_name)
image_ax.set_title(model_name + ', epoch ' + weight_idx)
fig.add_subplot(image_ax)
fig.add_subplot(labels_ax)
plt.savefig(os.path.join(cam_path, 'cam_{}.png'.format(weight_idx)))
plt.close(fig)
示例4: plotContourGrid
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def plotContourGrid(t, xT, uPred, uTarget):
'''
Creates grid of 4 different test cases, plots target, prediction and error for each
'''
mpl.rcParams['font.family'] = ['serif'] # default is sans-serif
rc('text', usetex=False)
fig = plt.figure(figsize=(15, 9), dpi=150)
outer = gridspec.GridSpec(2, 2, wspace=0.45, hspace=0.2) # Outer grid
for i in range(4):
# Inner grid
inner = gridspec.GridSpecFromSubplotSpec(3, 1,
subplot_spec=outer[i], wspace=0, hspace=0.2)
ax = []
for j in range(3):
ax0 = plt.Subplot(fig, inner[j])
fig.add_subplot(ax0)
ax.append(ax0)
# Plot specific test case
plotPred(fig, ax, t, xT, uPred[i], uTarget[i])
file_dir = '.'
# If directory does not exist create it
if not os.path.exists(file_dir):
os.makedirs(file_dir)
file_name = file_dir+"/burger_AR_pred"
plt.savefig(file_name+".png", bbox_inches='tight')
plt.savefig(file_name+".pdf", bbox_inches='tight')
plt.show()
示例5: plotContourGrid
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def plotContourGrid(t, xT, uPred, betas, uTarget):
'''
Creates grid of 4 different test cases, plots target, prediction, variance and error for each
'''
mpl.rcParams['font.family'] = ['serif'] # default is sans-serif
rc('text', usetex=False)
fig = plt.figure(figsize=(15, 13), dpi=150)
outer = gridspec.GridSpec(2, 2, wspace=0.45, hspace=0.2) # Outer grid
for i in range(4):
# Inner grid
inner = gridspec.GridSpecFromSubplotSpec(4, 1,
subplot_spec=outer[i], wspace=0, hspace=0.25)
ax = []
for j in range(4):
ax0 = plt.Subplot(fig, inner[j])
fig.add_subplot(ax0)
ax.append(ax0)
# Plot specific test case
plotPred(fig, ax, t, xT, uPred[i], betas, uTarget[i])
file_dir = '.'
# If directory does not exist create it
if not os.path.exists(file_dir):
os.makedirs(file_dir)
file_name = file_dir+"/burger_BAR_pred"
plt.savefig(file_name+".png", bbox_inches='tight')
plt.savefig(file_name+".pdf", bbox_inches='tight')
plt.show()
示例6: plot_preds
# 需要导入模块: from matplotlib import pyplot [as 别名]
# 或者: from matplotlib.pyplot import Subplot [as 别名]
def plot_preds(preds, batch):
"""
Lots of matplotlib magic to plot the predictions
:param preds:
:param batch: tuple of images, labels
:return:
"""
images, labels = batch
if isinstance(preds, list):
preds = np.stack(preds)
num_samples, num_batch, num_classes = preds.shape
ave_preds = np.mean(preds, 0)
pred_class = np.argmax(ave_preds, 1)
entropy, variance, _, _ = calc_risk(preds)
# Do all the plotting
for n in range(num_batch):
fig = plt.figure(figsize=(10, 8))
outer = gridspec.GridSpec(1, 2, wspace=0.2, hspace=0.2)
half = gridspec.GridSpecFromSubplotSpec(4, 4, subplot_spec=outer[0], wspace=0.1, hspace=0.1)
colors = get_color(pred_class[n], labels[n])
for num_sample in range(half._ncols * half._nrows):
ax = plt.Subplot(fig, half[num_sample])
ax.bar(range(10), preds[num_sample, n], color=colors)
ax.set_ylim(0, np.max(preds))
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
half = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=outer[1], wspace=0.1, hspace=0.1)
ax = plt.Subplot(fig, half[0])
ax.imshow(np.squeeze(images[n]))
fig.add_subplot(ax)
ax = plt.Subplot(fig, half[1])
ax.bar(range(10), ave_preds[n], color=colors)
ax.set_ylim(0, np.max(preds))
ax.set_xticks([])
fig.add_subplot(ax)
ax = plt.Subplot(fig, half[2])
t = ax.text(0.5, 0.5, 'Entropy %7.3f \n Std %7.3f' % (entropy[n], variance[n]))
t.set_ha('center')
fig.add_subplot(ax)
# fig.show()
plt.savefig('im/plot%i.png' % n)