当前位置: 首页>>代码示例>>Python>>正文


Python pylab.ylim方法代码示例

本文整理汇总了Python中matplotlib.pylab.ylim方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.ylim方法的具体用法?Python pylab.ylim怎么用?Python pylab.ylim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.ylim方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_clustering

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
    pylab.figure(num=None, figsize=(8, 6))
    if km:
        pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
    else:
        pylab.scatter(x, y, s=50)

    pylab.title(title)
    pylab.xlabel("Occurrence word 1")
    pylab.ylabel("Occurrence word 2")

    pylab.autoscale(tight=True)
    pylab.ylim(ymin=0, ymax=1)
    pylab.xlim(xmin=0, xmax=1)
    pylab.grid(True, linestyle='-', color='0.75')

    return pylab 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:plot_kmeans_example.py

示例2: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py

示例3: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
    """绘制R/P曲线"""
    try:
        from matplotlib import pylab
        pylab.figure(num=None, figsize=(6, 5))
        pylab.xlim([0.0, 1.0])
        pylab.ylim([0.0, 1.0])
        pylab.xlabel('Recall')
        pylab.ylabel('Precision')
        pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
        pylab.fill_between(recall, precision, alpha=0.5)
        pylab.grid(True, linestyle='-', color='0.75')
        pylab.plot(recall, precision, lw=1)
        pylab.savefig(figure_path)
    except Exception as e:
        print("save image error with matplotlib")
        pass 
开发者ID:shibing624,项目名称:text-classifier,代码行数:19,代码来源:evaluate.py

示例4: plot_pr_curve

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
    """
      Function that plots the PR-curve.

      Args:
        pr_curve: the values of precision for each recall value
        title: the title of the plot
    """
    plt.figure(figsize=(16, 9))
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
    plt.grid(True, linestyle='dotted')
    plt.xlabel('Recall', color='k', fontsize=27)
    plt.ylabel('Precision', color='k', fontsize=27)
    plt.yticks(color='k', fontsize=20)
    plt.xticks(color='k', fontsize=20)
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title(title, color='k', fontsize=27)
    plt.tight_layout()
    plt.show() 
开发者ID:MKLab-ITI,项目名称:ndvr-dml,代码行数:25,代码来源:utils.py

示例5: plot_xz_landscape

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_xz_landscape(self):
        """
        plots the xz landscape, i.e., how your vna frequency span changes with respect to the x vector
        :return: None
        """
        if not qkit.module_available("matplotlib"):
            raise ImportError("matplotlib not found.")

        if self.xzlandscape_func:
            y_values = self.xzlandscape_func(self.spec.x_vec)
            plt.plot(self.spec.x_vec, y_values, 'C1')
            plt.fill_between(self.spec.x_vec, y_values+self.z_span/2., y_values-self.z_span/2., color='C0', alpha=0.5)
            plt.xlim((self.spec.x_vec[0], self.spec.x_vec[-1]))
            plt.ylim((self.xz_freqpoints[0], self.xz_freqpoints[-1]))
            plt.show()
        else:
            print('No xz funcion generated. Use landscape.generate_xz_function') 
开发者ID:qkitgroup,项目名称:qkit,代码行数:19,代码来源:spectroscopy.py

示例6: addqqplotinfo

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def addqqplotinfo(qnull,M,xl='-log10(P) observed',yl='-log10(P) expected',xlim=None,ylim=None,alphalevel=0.05,legendlist=None,fixaxes=False):    
    distr='log10'
    pl.plot([0,qnull.max()], [0,qnull.max()],'k')
    pl.ylabel(xl)
    pl.xlabel(yl)
    if xlim is not None:
        pl.xlim(xlim)
    if ylim is not None:
        pl.ylim(ylim)        
    if alphalevel is not None:
        if distr == 'log10':
            betaUp, betaDown, theoreticalPvals = _qqplot_bar(M=M,alphalevel=alphalevel,distr=distr)
            lower = -sp.log10(theoreticalPvals-betaDown)
            upper = -sp.log10(theoreticalPvals+betaUp)
            pl.fill_between(-sp.log10(theoreticalPvals),lower,upper,color="grey",alpha=0.5)
            #pl.plot(-sp.log10(theoreticalPvals),lower,'g-.')
            #pl.plot(-sp.log10(theoreticalPvals),upper,'g-.')
    if legendlist is not None:
        leg = pl.legend(legendlist, loc=4, numpoints=1)
        # set the markersize for the legend
        for lo in leg.legendHandles:
            lo.set_markersize(10)

    if fixaxes:
        fix_axes() 
开发者ID:MicrosoftResearch,项目名称:Azimuth,代码行数:27,代码来源:util.py

示例7: plot_performance_profiles

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_performance_profiles(problems, solvers):
    """
    Plot performance profiles in matplotlib for specified problems and solvers
    """
    # Remove OSQP polish solver
    solvers = solvers.copy()
    for s in solvers:
        if "polish" in s:
            solvers.remove(s)

    df = pd.read_csv('./results/%s/performance_profiles.csv' % problems)
    plt.figure(0)
    for solver in solvers:
        plt.plot(df["tau"], df[solver], label=solver)
    plt.xlim(1., 10000.)
    plt.ylim(0., 1.)
    plt.xlabel(r'Performance ratio $\tau$')
    plt.ylabel('Ratio of problems solved')
    plt.xscale('log')
    plt.legend()
    plt.grid()
    plt.show(block=False)
    results_file = './results/%s/%s.png' % (problems, problems)
    print("Saving plots to %s" % results_file)
    plt.savefig(results_file) 
开发者ID:oxfordcontrol,项目名称:osqp_benchmarks,代码行数:27,代码来源:benchmark.py

示例8: dispersion_plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        from matplotlib import pylab
    except ImportError:
        raise ValueError('The plot function requires matplotlib to be installed.'
                     'See http://matplotlib.org/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = list(map(str.lower, words))
        text_to_comp = list(map(str.lower, text))
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = list(zip(*points))
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(list(range(len(words))), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title(title)
    pylab.xlabel("Word Offset")
    pylab.show() 
开发者ID:rafasashi,项目名称:razzy-spinner,代码行数:43,代码来源:dispersion.py

示例9: plot_valdata

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_valdata(x_val_cuda, knobs_val_cuda, y_val_cuda, y_val_hat_cuda, effect, \
	epoch, loss_val, file_prefix='val_data', num_plots=50, target_size=None):

	x_size = len(x_val_cuda.data.cpu().numpy()[0])
	if target_size is None:
		y_size = len(y_val_cuda.data.cpu().numpy()[0])
	else:
		y_size = target_size
	t_small = range(x_size-y_size, x_size)
	for plot_i in range(0, num_plots):
		x_val = x_val_cuda.data.cpu().numpy()
		knobs_w = effect.knobs_wc( knobs_val_cuda.data.cpu().numpy()[plot_i,:] )
		plt.figure(plot_i,figsize=(6,8))
		titlestr = f'{effect.name} Val data, epoch {epoch+1}, loss_val = {loss_val.item():.3e}\n'
		for i in range(len(effect.knob_names)):
		    titlestr += f'{effect.knob_names[i]} = {knobs_w[i]:.2f}'
		    if i < len(effect.knob_names)-1: titlestr += ', '
		plt.suptitle(titlestr)
		plt.subplot(3, 1, 1)
		plt.plot(x_val[plot_i, :], 'b', label='Input')
		plt.ylim(-1,1)
		plt.xlim(0,x_size)
		plt.legend()
		plt.subplot(3, 1, 2)
		y_val = y_val_cuda.data.cpu().numpy()
		plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
		plt.xlim(0,x_size)
		plt.ylim(-1,1)
		plt.legend()
		plt.subplot(3, 1, 3)
		plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
		y_val_hat = y_val_hat_cuda.data.cpu().numpy()
		plt.plot(t_small, y_val_hat[plot_i, -y_size:], c=(0,0.5,0,0.85), label='Predicted')
		plt.ylim(-1,1)
		plt.xlim(0,x_size)
		plt.legend()
		filename = file_prefix + '_' + str(plot_i) + '.png'
		savefig(filename)
	return 
开发者ID:drscotthawley,项目名称:signaltrain,代码行数:41,代码来源:io_methods.py

示例10: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_pr(auc_score, name, phase, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" %
                  (filename, phase)), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例11: plot_bias_variance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_bias_variance(data_sizes, train_errors, test_errors, name):
    pylab.clf()
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1)
    pylab.legend(["train error", "test error"], loc="upper right")
    pylab.grid()
    pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png")) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:13,代码来源:utils.py

示例12: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC = %0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "pr_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例13: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_roc(auc_score, name, fpr, tpr):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('Receiver operating characteristic (AUC=%0.2f)\n%s' % (
        auc_score, name))
    pylab.legend(loc="lower right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.fill_between(tpr, fpr, alpha=0.5)
    pylab.plot(fpr, tpr, lw=1)
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + name.replace(" ", "_") + ".png")) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:17,代码来源:utils.py

示例14: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.plot(recall, precision, lw=1)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png")) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:14,代码来源:utils.py

示例15: plot_bias_variance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import ylim [as 别名]
def plot_bias_variance(data_sizes, train_errors, test_errors, name, title):
    pylab.figure(num=None, figsize=(6, 5))
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, test_errors, "--", data_sizes, train_errors, "b-", lw=1)
    pylab.legend(["test error", "train error"], loc="upper right")
    pylab.grid(True, linestyle='-', color='0.75')
    pylab.savefig(
        os.path.join(CHART_DIR, "bv_" + name.replace(" ", "_") + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:14,代码来源:utils.py


注:本文中的matplotlib.pylab.ylim方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。