当前位置: 首页>>代码示例>>Python>>正文


Python pylab.xticks方法代码示例

本文整理汇总了Python中matplotlib.pylab.xticks方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.xticks方法的具体用法?Python pylab.xticks怎么用?Python pylab.xticks使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.xticks方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_entropy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py

示例2: _plot_NWOE_bins

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def _plot_NWOE_bins(NWOE_dict, feats):
    """
    Plots the NWOE by bin for the subset of features interested in (form of list)

    Parameters
    ----------
    - NWOE_dict = dictionary output of `NWOE` function
    - feats = list of features to plot NWOE for

    Returns
    -------
    - plots of NWOE for each feature by bin
    """

    for feat in feats:
        fig, ax = _plot_defaults()
        feat_df = NWOE_dict[feat].reset_index()
        plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5)
        plt.xticks(rotation='vertical')
        ax.set_title('NWOE by bin for '+str(feat))
        ax.set_xlabel('Bin Interval');
    return ax 
开发者ID:wayfair,项目名称:pylift,代码行数:24,代码来源:base.py

示例3: plot_pr_curve

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
    """
      Function that plots the PR-curve.

      Args:
        pr_curve: the values of precision for each recall value
        title: the title of the plot
    """
    plt.figure(figsize=(16, 9))
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
    plt.grid(True, linestyle='dotted')
    plt.xlabel('Recall', color='k', fontsize=27)
    plt.ylabel('Precision', color='k', fontsize=27)
    plt.yticks(color='k', fontsize=20)
    plt.xticks(color='k', fontsize=20)
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title(title, color='k', fontsize=27)
    plt.tight_layout()
    plt.show() 
开发者ID:MKLab-ITI,项目名称:ndvr-dml,代码行数:25,代码来源:utils.py

示例4: plot_word_freq_dist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot_word_freq_dist(text):
    fd = text.vocab()

    samples = [item for item, _ in fd.most_common(50)]
    values = [fd[sample] for sample in samples]
    values = [sum(values[:i+1]) * 100.0/fd.N() for i in range(len(values))]
    pylab.title(text.name)
    pylab.xlabel("Samples")
    pylab.ylabel("Cumulative Percentage")
    pylab.plot(values)
    pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90)
    pylab.show() 
开发者ID:rafasashi,项目名称:razzy-spinner,代码行数:14,代码来源:wordfreq_app.py

示例5: malt_demo

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    tree.pprint()
    if nx:
        # currently doesn't work
        import networkx
        from matplotlib import pylab

        g = dg.nx_graph()
        g.info()
        pos = networkx.spring_layout(g, dim=1)
        networkx.draw_networkx_nodes(g, pos, node_size=50)
        # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8)
        networkx.draw_networkx_labels(g, pos, dg.nx_labels)
        pylab.xticks([])
        pylab.yticks([])
        pylab.savefig('tree.png')
        pylab.show() 
开发者ID:rafasashi,项目名称:razzy-spinner,代码行数:43,代码来源:dependencygraph.py

示例6: _plot_correlation_func

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def _plot_correlation_func(x, y):

    r, p = pearsonr(x, y)
    title = "Cor($X_1$, $X_2$) = %.3f" % r
    pylab.scatter(x, y)
    pylab.title(title)
    pylab.xlabel("$X_1$")
    pylab.ylabel("$X_2$")

    f1 = scipy.poly1d(scipy.polyfit(x, y, 1))
    pylab.plot(x, f1(x), "r--", linewidth=2)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]]) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:15,代码来源:demo_corr.py

示例7: plot1D_mat

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : ndarray, shape (na,)
        Source distribution
    b : ndarray, shape (nb,)
        Target distribution
    M : ndarray, shape (na, nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2) 
开发者ID:PythonOT,项目名称:POT,代码行数:43,代码来源:plot.py

示例8: check_band_occupancy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def check_band_occupancy(self, plot=True):
        """
            Check whether there are still empty bands available.

            args:
                plot (bool): plots occupancy of the last step

            returns:
                True if there are still empty bands
        """
        import matplotlib.pylab as plt
        elec_dict = self._job['output/generic/dft']['n_valence']
        if elec_dict is None:
            raise AssertionError('Number of electrons not parsed')
        n_elec = np.sum([elec_dict[k]
                         for k in self._job.structure.get_chemical_symbols()])
        n_elec = int(np.ceil(n_elec/2))
        bands = self._job['output/generic/dft/bands_occ'][-1]
        bands = bands.reshape(-1, bands.shape[-1])
        max_occ = np.sum(bands>0, axis=-1).max()
        n_bands = bands.shape[-1]
        if plot:
            xticks = np.arange(1, n_bands+1)
            plt.xlabel('Electron number')
            plt.ylabel('Occupancy')
            if n_bands<20:
                plt.xticks(xticks)
            plt.axvline(n_elec, label='#electrons: {}'.format(n_elec))
            plt.axvline(max_occ, color='red',
                label='Max occupancy: {}'.format(max_occ))
            plt.axvline(n_bands, color='green',
                label='Number of bands: {}'.format(n_bands))
            plt.plot(xticks, bands.T, 'x', color='black')
            plt.legend()
        if max_occ < n_bands:
            return True
        else:
            return False 
开发者ID:pyiron,项目名称:pyiron,代码行数:40,代码来源:interactive.py

示例9: subplot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def subplot(data, name, ylabel):
    fig = plt.figure(figsize=(20, 6))
    ax = plt.subplot(111)
    rep_labels = [str(j) for j in reps]
    x_pos = [i for i, _ in enumerate(rep_labels)]
    X = np.arange(len(data))
    ax_plot = ax.bar(x_pos, data, color=color_map(data_normalizer(data)), width=0.45)

    plt.xticks(x_pos, rep_labels)
    plt.xlabel("Repetitions")
    plt.ylabel(ylabel)

    autolabel(ax, ax_plot)
    plt.savefig(name + ".png") 
开发者ID:thouska,项目名称:spotpy,代码行数:16,代码来源:dds_parallel_plot.py

示例10: generate_box_plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses):

  num_methods = len(methods)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.3 / num_methods
  spacing = 0.3 / num_methods
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('RMSE position [m]', color='b')
  ax1.tick_params('y', colors='b')
  fig.suptitle(
      "Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24')
  bp_position = ax1.boxplot(position_rmses, 0, '',
                            positions=x_ticks - spacing, widths=width)
  plt.setp(bp_position['boxes'], color='blue', linewidth=line_width)
  plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width)
  plt.setp(bp_position['fliers'], color='blue',
           marker='+', linewidth=line_width)
  plt.setp(bp_position['caps'], color='blue', linewidth=line_width)
  plt.setp(bp_position['medians'], color='blue', linewidth=line_width)
  ax2 = ax1.twinx()
  ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g')
  ax2.tick_params('y', colors='g')
  bp_orientation = ax2.boxplot(
      orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width)
  plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['fliers'], color='green',
           marker='+')
  plt.setp(bp_orientation['caps'], color='green', linewidth=line_width)
  plt.setp(bp_orientation['medians'], color='green', linewidth=line_width)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing)

  plt.show() 
开发者ID:ethz-asl,项目名称:hand_eye_calibration,代码行数:38,代码来源:generate_plots.py

示例11: generate_time_plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
  num_methods = len(methods)
  num_datasets = len(datasets)
  x_ticks = np.linspace(0., 1., num_methods)

  width = 0.6 / num_methods / num_datasets
  spacing = 0.4 / num_methods / num_datasets
  fig, ax1 = plt.subplots()
  ax1.set_ylabel('Time [s]', color='b')
  ax1.tick_params('y', colors='b')
  ax1.set_yscale('log')
  fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
  handles = []
  for i, dataset in enumerate(datasets):
    runtimes = [runtimes_per_method[dataset][method] for method in methods]
    bp = ax1.boxplot(
        runtimes, 0, '',
        positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
                   spacing * 2),
        widths=width)
    plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
    plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
    plt.setp(bp['fliers'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['medians'], color=colors[i],
             marker='+', linewidth=line_width)
    plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
    handles.append(mpatches.Patch(color=colors[i], label=dataset))
  plt.legend(handles=handles, loc=2)

  plt.xticks(x_ticks, methods)
  plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
           x_ticks[-1] + 2.5 * spacing * num_datasets)

  plt.show() 
开发者ID:ethz-asl,项目名称:hand_eye_calibration,代码行数:37,代码来源:generate_plots.py

示例12: bar

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def bar(self, key_word_sep=" ", title=None, **kwargs):
        """Generates a pylab bar plot from the result set.

        ``matplotlib`` must be installed, and in an
        IPython Notebook, inlining must be on::

            %%matplotlib inline

        The last quantitative column is taken as the Y values;
        all other columns are combined to label the X axis.

        :param title: plot title, defaults to names of Y value columns
        :param key_word_sep: string used to separate column values
                             from each other in labels

        Any additional keyword arguments will be passsed
        through to ``matplotlib.pylab.bar``.
        """
        if not plt:
            raise ImportError("Try installing matplotlib first.")
        self.guess_pie_columns(xlabel_sep=key_word_sep)
        plot = plt.bar(range(len(self.ys[0])), self.ys[0], **kwargs)
        if self.xlabels:
            plt.xticks(range(len(self.xlabels)), self.xlabels,
                       rotation=45)
        plt.xlabel(self.xlabel)
        plt.ylabel(self.ys[0].name)
        return plot 
开发者ID:versae,项目名称:ipython-cypher,代码行数:30,代码来源:run.py

示例13: plot_word_freq_dist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot_word_freq_dist(text):
    fd = text.vocab()

    samples = [item for item, _ in fd.most_common(50)]
    values = [fd[sample] for sample in samples]
    values = [sum(values[: i + 1]) * 100.0 / fd.N() for i in range(len(values))]
    pylab.title(text.name)
    pylab.xlabel("Samples")
    pylab.ylabel("Cumulative Percentage")
    pylab.plot(values)
    pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90)
    pylab.show() 
开发者ID:V1EngineeringInc,项目名称:V1EngineeringInc-Docs,代码行数:14,代码来源:wordfreq_app.py

示例14: plot_confusion_matrix

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot_confusion_matrix(y_true, y_pred, classes, figure_size=(8, 8)):
    """This function plots a confusion matrix."""
    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100

    # Build Laussen Labs colormap
    cmap = LinearSegmentedColormap.from_list('laussen_labs_green', ['w', '#43BB9B'], N=256)

    # Setup plot
    plt.figure(figsize=figure_size)

    # Plot confusion matrix
    plt.imshow(cm, interpolation='nearest', cmap=cmap)

    # Modify axes
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)
    thresh = cm.max() / 1.5
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, str(np.round(cm[i, j], 2)) + ' %', horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black", fontsize=20)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.tight_layout()
    plt.ylabel('True Label', fontsize=25)
    plt.xlabel('Predicted Label', fontsize=25)

    plt.show() 
开发者ID:Seb-Good,项目名称:deepecg,代码行数:32,代码来源:evaluation.py

示例15: plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xticks [as 别名]
def plot(self, *args, **kwargs):
        """
        Plot samples from the frequency distribution
        displaying the most frequent sample first.  If an integer
        parameter is supplied, stop after this many samples have been
        plotted.  For a cumulative plot, specify cumulative=True.
        (Requires Matplotlib to be installed.)

        :param title: The title for the graph
        :type title: str
        :param cumulative: A flag to specify whether the plot is cumulative (default = False)
        :type title: bool
        """
        try:
            from matplotlib import pylab
        except ImportError:
            raise ValueError('The plot function requires matplotlib to be installed.'
                         'See http://matplotlib.org/')

        if len(args) == 0:
            args = [len(self)]
        samples = [item for item, _ in self.most_common(*args)]

        cumulative = _get_kwarg(kwargs, 'cumulative', False)
        if cumulative:
            freqs = list(self._cumulative_frequencies(samples))
            ylabel = "Cumulative Counts"
        else:
            freqs = [self[sample] for sample in samples]
            ylabel = "Counts"
        # percents = [f * 100 for f in freqs]  only in ProbDist?

        pylab.grid(True, color="silver")
        if not "linewidth" in kwargs:
            kwargs["linewidth"] = 2
        if "title" in kwargs:
            pylab.title(kwargs["title"])
            del kwargs["title"]
        pylab.plot(freqs, **kwargs)
        pylab.xticks(range(len(samples)), [compat.text_type(s) for s in samples], rotation=90)
        pylab.xlabel("Samples")
        pylab.ylabel(ylabel)
        pylab.show() 
开发者ID:rafasashi,项目名称:razzy-spinner,代码行数:45,代码来源:probability.py


注:本文中的matplotlib.pylab.xticks方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。