本文整理汇总了Python中matplotlib.pylab.xlim方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.xlim方法的具体用法?Python pylab.xlim怎么用?Python pylab.xlim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.xlim方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_clustering
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
pylab.figure(num=None, figsize=(8, 6))
if km:
pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
else:
pylab.scatter(x, y, s=50)
pylab.title(title)
pylab.xlabel("Occurrence word 1")
pylab.ylabel("Occurrence word 2")
pylab.autoscale(tight=True)
pylab.ylim(ymin=0, ymax=1)
pylab.xlim(xmin=0, xmax=1)
pylab.grid(True, linestyle='-', color='0.75')
return pylab
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:plot_kmeans_example.py
示例2: plot_entropy
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_entropy():
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
title = "Entropy $H(X)$"
pylab.title(title)
pylab.xlabel("$P(X=$coin will show heads up$)$")
pylab.ylabel("$H(X)$")
pylab.xlim(xmin=0, xmax=1.1)
x = np.arange(0.001, 1, 0.001)
y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
pylab.plot(x, y)
# pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
# [0,1,2,3,4]])
pylab.autoscale(tight=True)
pylab.grid(True)
filename = "entropy_demo.png"
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py
示例3: plot_roc
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
pylab.grid(True)
pylab.plot([0, 1], [0, 1], 'k--')
pylab.plot(fpr, tpr)
pylab.fill_between(fpr, tpr, alpha=0.5)
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('False Positive Rate')
pylab.ylabel('True Positive Rate')
pylab.title('ROC curve (AUC = %0.2f) / %s' %
(auc_score, label), verticalalignment="bottom")
pylab.legend(loc="lower right")
filename = name.replace(" ", "_")
pylab.savefig(
os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py
示例4: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
"""绘制R/P曲线"""
try:
from matplotlib import pylab
pylab.figure(num=None, figsize=(6, 5))
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
pylab.fill_between(recall, precision, alpha=0.5)
pylab.grid(True, linestyle='-', color='0.75')
pylab.plot(recall, precision, lw=1)
pylab.savefig(figure_path)
except Exception as e:
print("save image error with matplotlib")
pass
示例5: plot_pr_curve
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
"""
Function that plots the PR-curve.
Args:
pr_curve: the values of precision for each recall value
title: the title of the plot
"""
plt.figure(figsize=(16, 9))
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
plt.grid(True, linestyle='dotted')
plt.xlabel('Recall', color='k', fontsize=27)
plt.ylabel('Precision', color='k', fontsize=27)
plt.yticks(color='k', fontsize=20)
plt.xticks(color='k', fontsize=20)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(title, color='k', fontsize=27)
plt.tight_layout()
plt.show()
示例6: plot_xz_landscape
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_xz_landscape(self):
"""
plots the xz landscape, i.e., how your vna frequency span changes with respect to the x vector
:return: None
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.xzlandscape_func:
y_values = self.xzlandscape_func(self.spec.x_vec)
plt.plot(self.spec.x_vec, y_values, 'C1')
plt.fill_between(self.spec.x_vec, y_values+self.z_span/2., y_values-self.z_span/2., color='C0', alpha=0.5)
plt.xlim((self.spec.x_vec[0], self.spec.x_vec[-1]))
plt.ylim((self.xz_freqpoints[0], self.xz_freqpoints[-1]))
plt.show()
else:
print('No xz funcion generated. Use landscape.generate_xz_function')
示例7: plot_performance_profiles
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_performance_profiles(problems, solvers):
"""
Plot performance profiles in matplotlib for specified problems and solvers
"""
# Remove OSQP polish solver
solvers = solvers.copy()
for s in solvers:
if "polish" in s:
solvers.remove(s)
df = pd.read_csv('./results/%s/performance_profiles.csv' % problems)
plt.figure(0)
for solver in solvers:
plt.plot(df["tau"], df[solver], label=solver)
plt.xlim(1., 10000.)
plt.ylim(0., 1.)
plt.xlabel(r'Performance ratio $\tau$')
plt.ylabel('Ratio of problems solved')
plt.xscale('log')
plt.legend()
plt.grid()
plt.show(block=False)
results_file = './results/%s/%s.png' % (problems, problems)
print("Saving plots to %s" % results_file)
plt.savefig(results_file)
示例8: plot_valdata
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_valdata(x_val_cuda, knobs_val_cuda, y_val_cuda, y_val_hat_cuda, effect, \
epoch, loss_val, file_prefix='val_data', num_plots=50, target_size=None):
x_size = len(x_val_cuda.data.cpu().numpy()[0])
if target_size is None:
y_size = len(y_val_cuda.data.cpu().numpy()[0])
else:
y_size = target_size
t_small = range(x_size-y_size, x_size)
for plot_i in range(0, num_plots):
x_val = x_val_cuda.data.cpu().numpy()
knobs_w = effect.knobs_wc( knobs_val_cuda.data.cpu().numpy()[plot_i,:] )
plt.figure(plot_i,figsize=(6,8))
titlestr = f'{effect.name} Val data, epoch {epoch+1}, loss_val = {loss_val.item():.3e}\n'
for i in range(len(effect.knob_names)):
titlestr += f'{effect.knob_names[i]} = {knobs_w[i]:.2f}'
if i < len(effect.knob_names)-1: titlestr += ', '
plt.suptitle(titlestr)
plt.subplot(3, 1, 1)
plt.plot(x_val[plot_i, :], 'b', label='Input')
plt.ylim(-1,1)
plt.xlim(0,x_size)
plt.legend()
plt.subplot(3, 1, 2)
y_val = y_val_cuda.data.cpu().numpy()
plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
plt.xlim(0,x_size)
plt.ylim(-1,1)
plt.legend()
plt.subplot(3, 1, 3)
plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
y_val_hat = y_val_hat_cuda.data.cpu().numpy()
plt.plot(t_small, y_val_hat[plot_i, -y_size:], c=(0,0.5,0,0.85), label='Predicted')
plt.ylim(-1,1)
plt.xlim(0,x_size)
plt.legend()
filename = file_prefix + '_' + str(plot_i) + '.png'
savefig(filename)
return
示例9: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_pr(auc_score, name, phase, precision, recall, label=None):
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
pylab.grid(True)
pylab.fill_between(recall, precision, alpha=0.5)
pylab.plot(recall, precision, lw=1)
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label))
filename = name.replace(" ", "_")
pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" %
(filename, phase)), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py
示例10: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_pr(auc_score, name, precision, recall, label=None):
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
pylab.grid(True)
pylab.fill_between(recall, precision, alpha=0.5)
pylab.plot(recall, precision, lw=1)
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R curve (AUC = %0.2f) / %s' % (auc_score, label))
filename = name.replace(" ", "_")
pylab.savefig(
os.path.join(CHART_DIR, "pr_" + filename + ".png"), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py
示例11: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_pr(auc_score, name, precision, recall, label=None):
pylab.figure(num=None, figsize=(6, 5))
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
pylab.fill_between(recall, precision, alpha=0.5)
pylab.grid(True, linestyle='-', color='0.75')
pylab.plot(recall, precision, lw=1)
filename = name.replace(" ", "_")
pylab.savefig(os.path.join(CHART_DIR, "pr_" + filename + ".png"))
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:14,代码来源:utils.py
示例12: plot1D_mat
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot1D_mat(a, b, M, title=''):
""" Plot matrix M with the source and target 1D distribution
Creates a subplot with the source distribution a on the left and
target distribution b on the tot. The matrix M is shown in between.
Parameters
----------
a : ndarray, shape (na,)
Source distribution
b : ndarray, shape (nb,)
Target distribution
M : ndarray, shape (na, nb)
Matrix to plot
"""
na, nb = M.shape
gs = gridspec.GridSpec(3, 3)
xa = np.arange(na)
xb = np.arange(nb)
ax1 = pl.subplot(gs[0, 1:])
pl.plot(xb, b, 'r', label='Target distribution')
pl.yticks(())
pl.title(title)
ax2 = pl.subplot(gs[1:, 0])
pl.plot(a, xa, 'b', label='Source distribution')
pl.gca().invert_xaxis()
pl.gca().invert_yaxis()
pl.xticks(())
pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
pl.imshow(M, interpolation='nearest')
pl.axis('off')
pl.xlim((0, nb))
pl.tight_layout()
pl.subplots_adjust(wspace=0., hspace=0.2)
示例13: plot_xy_landscape
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def plot_xy_landscape(self):
"""
Plots the xy landscape(s) (for 3D scan, z-axis (vna) is not plotted
:return:
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.xylandscapes:
for i in self.xylandscapes:
try:
arg = np.where((i['x_range'][0] <= self.spec.x_vec) & (self.spec.x_vec <= i['x_range'][1]))
x = self.spec.x_vec[arg]
t = i['center_points'][arg]
plt.plot(x, t, color='C1')
if i['blacklist']:
plt.fill_between(x, t + i['y_span'] / 2., t - i['y_span'] / 2., color='C3', alpha=0.5)
else:
plt.fill_between(x, t + i['y_span'] / 2., t - i['y_span'] / 2., color='C0', alpha=0.5)
except Exception as e:
print(e)
print('invalid trace...skip')
plt.axhspan(np.min(self.spec.y_vec), np.max(self.spec.y_vec), facecolor='0.5', alpha=0.5)
plt.xlim(np.min(self.spec.x_vec), np.max(self.spec.x_vec))
plt.show()
else:
print('No trace generated. Use landscape.generate_xy_function')
示例14: generate_box_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses):
num_methods = len(methods)
x_ticks = np.linspace(0., 1., num_methods)
width = 0.3 / num_methods
spacing = 0.3 / num_methods
fig, ax1 = plt.subplots()
ax1.set_ylabel('RMSE position [m]', color='b')
ax1.tick_params('y', colors='b')
fig.suptitle(
"Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24')
bp_position = ax1.boxplot(position_rmses, 0, '',
positions=x_ticks - spacing, widths=width)
plt.setp(bp_position['boxes'], color='blue', linewidth=line_width)
plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width)
plt.setp(bp_position['fliers'], color='blue',
marker='+', linewidth=line_width)
plt.setp(bp_position['caps'], color='blue', linewidth=line_width)
plt.setp(bp_position['medians'], color='blue', linewidth=line_width)
ax2 = ax1.twinx()
ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g')
ax2.tick_params('y', colors='g')
bp_orientation = ax2.boxplot(
orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width)
plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width)
plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width)
plt.setp(bp_orientation['fliers'], color='green',
marker='+')
plt.setp(bp_orientation['caps'], color='green', linewidth=line_width)
plt.setp(bp_orientation['medians'], color='green', linewidth=line_width)
plt.xticks(x_ticks, methods)
plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing)
plt.show()
示例15: generate_time_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import xlim [as 别名]
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
num_methods = len(methods)
num_datasets = len(datasets)
x_ticks = np.linspace(0., 1., num_methods)
width = 0.6 / num_methods / num_datasets
spacing = 0.4 / num_methods / num_datasets
fig, ax1 = plt.subplots()
ax1.set_ylabel('Time [s]', color='b')
ax1.tick_params('y', colors='b')
ax1.set_yscale('log')
fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
handles = []
for i, dataset in enumerate(datasets):
runtimes = [runtimes_per_method[dataset][method] for method in methods]
bp = ax1.boxplot(
runtimes, 0, '',
positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
spacing * 2),
widths=width)
plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
plt.setp(bp['fliers'], color=colors[i],
marker='+', linewidth=line_width)
plt.setp(bp['medians'], color=colors[i],
marker='+', linewidth=line_width)
plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
handles.append(mpatches.Patch(color=colors[i], label=dataset))
plt.legend(handles=handles, loc=2)
plt.xticks(x_ticks, methods)
plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
x_ticks[-1] + 2.5 * spacing * num_datasets)
plt.show()