当前位置: 首页>>代码示例>>Python>>正文


Python pylab.title方法代码示例

本文整理汇总了Python中matplotlib.pylab.title方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.title方法的具体用法?Python pylab.title怎么用?Python pylab.title使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.title方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: error_bar_plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def error_bar_plot(experiment_data, results, title="", ylabel=""):

    true_effect = experiment_data.true_effects.mean()
    estimators = list(results.keys())

    x = list(estimators)
    y = [results[estimator].ate for estimator in estimators]

    cis = [
        np.array(results[estimator].ci) - results[estimator].ate
        if results[estimator].ci is not None
        else [0, 0]
        for estimator in estimators
    ]
    err = [[abs(ci[0]) for ci in cis], [abs(ci[1]) for ci in cis]]

    plt.figure(figsize=(12, 5))
    (_, caps, _) = plt.errorbar(x, y, yerr=err, fmt="o", markersize=8, capsize=5)
    for cap in caps:
        cap.set_markeredgewidth(2)
    plt.plot(x, [true_effect] * len(x), label="True Effect")
    plt.legend(fontsize=12, loc="lower right")
    plt.ylabel(ylabel)
    plt.title(title) 
开发者ID:zykls,项目名称:whynot,代码行数:26,代码来源:mediator_utils.py

示例2: plotallfuncs

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.func_name)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.func_name)
    pl.ion() 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:22,代码来源:testfuncs.py

示例3: plot_clustering

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
    pylab.figure(num=None, figsize=(8, 6))
    if km:
        pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
    else:
        pylab.scatter(x, y, s=50)

    pylab.title(title)
    pylab.xlabel("Occurrence word 1")
    pylab.ylabel("Occurrence word 2")

    pylab.autoscale(tight=True)
    pylab.ylim(ymin=0, ymax=1)
    pylab.xlim(xmin=0, xmax=1)
    pylab.grid(True, linestyle='-', color='0.75')

    return pylab 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:plot_kmeans_example.py

示例4: plot_feat_importance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:utils.py

示例5: plot_entropy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py

示例6: plot_confusion_matrix

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:20,代码来源:utils.py

示例7: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py

示例8: plotallfuncs

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.__name__)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.__name__)
    pl.ion() 
开发者ID:miloharper,项目名称:neural-network-animation,代码行数:22,代码来源:testfuncs.py

示例9: plot_efrontier

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_efrontier(self):
        """Plots the Efficient Frontier."""
        if self.efrontier is None:
            # compute efficient frontier first
            self.efficient_frontier()
        plt.plot(
            self.efrontier[:, 0],
            self.efrontier[:, 1],
            linestyle="-.",
            color="black",
            lw=2,
            label="Efficient Frontier",
        )
        plt.title("Efficient Frontier")
        plt.xlabel("Volatility")
        plt.ylabel("Expected Return")
        plt.legend() 
开发者ID:fmilthaler,项目名称:FinQuant,代码行数:19,代码来源:efficient_frontier.py

示例10: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
    """绘制R/P曲线"""
    try:
        from matplotlib import pylab
        pylab.figure(num=None, figsize=(6, 5))
        pylab.xlim([0.0, 1.0])
        pylab.ylim([0.0, 1.0])
        pylab.xlabel('Recall')
        pylab.ylabel('Precision')
        pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
        pylab.fill_between(recall, precision, alpha=0.5)
        pylab.grid(True, linestyle='-', color='0.75')
        pylab.plot(recall, precision, lw=1)
        pylab.savefig(figure_path)
    except Exception as e:
        print("save image error with matplotlib")
        pass 
开发者ID:shibing624,项目名称:text-classifier,代码行数:19,代码来源:evaluate.py

示例11: plot_pr_curve

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
    """
      Function that plots the PR-curve.

      Args:
        pr_curve: the values of precision for each recall value
        title: the title of the plot
    """
    plt.figure(figsize=(16, 9))
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
    plt.grid(True, linestyle='dotted')
    plt.xlabel('Recall', color='k', fontsize=27)
    plt.ylabel('Precision', color='k', fontsize=27)
    plt.yticks(color='k', fontsize=20)
    plt.xticks(color='k', fontsize=20)
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title(title, color='k', fontsize=27)
    plt.tight_layout()
    plt.show() 
开发者ID:MKLab-ITI,项目名称:ndvr-dml,代码行数:25,代码来源:utils.py

示例12: plotKChart

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# 例子 
开发者ID:ysh329,项目名称:statistical-learning-methods-note,代码行数:21,代码来源:kNN.py

示例13: show_pred

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def show_pred(images, predictions, ground_truth):
    # choose 10 indice from images and visualize them
    indice = [np.random.randint(0, len(images)) for i in range(40)]
    for i in range(0, 40):
        plt.figure()
        plt.subplot(1, 3, 1)
        plt.tight_layout()
        plt.title('deformed image')
        plt.imshow(images[indice[i]])
        plt.subplot(1, 3, 2)
        plt.tight_layout()
        plt.title('predicted mask')
        plt.imshow(predictions[indice[i]])
        plt.subplot(1, 3, 3)
        plt.tight_layout()
        plt.title('ground truth label')
        plt.imshow(ground_truth[indice[i]])
    plt.show()

# Load Data Science Bowl 2018 training dataset 
开发者ID:limingwu8,项目名称:Image-Restoration,代码行数:22,代码来源:dataset.py

示例14: vPlotTrades

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def vPlotTrades(self, subset=None):
        if subset is None:
            subset = slice(None, None)
        fr = self.trades.ix[subset]
        le = fr.price[(fr.pos > 0) & (fr.vol > 0)]
        se = fr.price[(fr.pos < 0) & (fr.vol < 0)]
        lx = fr.price[(fr.pos.shift() > 0) & (fr.vol < 0)]
        sx = fr.price[(fr.pos.shift() < 0) & (fr.vol > 0)]

        import matplotlib.pylab as pylab

        pylab.plot(le.index, le.values, '^', color='lime', markersize=12,
                   label='long enter')
        pylab.plot(se.index, se.values, 'v', color='red', markersize=12,
                   label='short enter')
        pylab.plot(lx.index, lx.values, 'o', color='lime', markersize=7,
                   label='long exit')
        pylab.plot(sx.index, sx.values, 'o', color='red', markersize=7,
                   label='short exit')
        eq = self.equity.ix[subset].cumsum()
        ix = eq.index
        oOS = getattr(self.ohlc, self.open_label)
        (eq + oOS[ix[0]]).plot(color='red', style='-', label='strategy')
        # self.ohlc.O.ix[ix[0]:ix[-1]].plot(color='black', label='price')
        oOS.ix[subset].plot(color='black', label='price')
        pylab.legend(loc='best')
        pylab.title('%s\nTrades for %s' % (self, subset)) 
开发者ID:OpenTrading,项目名称:OpenTrader,代码行数:29,代码来源:PybacktestChef.py

示例15: vPlotEquity

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import title [as 别名]
def vPlotEquity(rEquityDiff, mOhlc, sPeriod='W',
                subset=None,
                sTitle="Equity",
                close_label='C',
                ):
    if subset is None:
        subset = slice(None, None)
    else:
        assert isinstance(subset, slice)
        
    rEquitySum = rEquityDiff[subset].cumsum()
    rEquitySum.plot(color='red', label='strategy')
    ix = mOhlc.ix[rEquitySum.index[0]:rEquitySum.index[-1]].index
    price = getattr(mOhlc, close_label)
    (price[ix] - price[ix][0]).resample(sPeriod, how='first').dropna() \
        .plot(color='black', alpha=0.5, label='underlying')

    import matplotlib.pylab as pylab

    pylab.legend(loc='best')
    pylab.title(sTitle)

# pylint: disable=W0110,C0103,R0903,E1136,E1101
#    C0103 invalid-name	39,54,66,179,180,180,182,214,216,217,273,284,285,286,287,288,300,301,321
#    E1101 no-member	179,214,215,218,284,300
#    E1136 unsubscriptable-object	181,182
#    R0903 too-few-public-methods	28
#    W0110 deprecated-lambda	61

# the end 
开发者ID:OpenTrading,项目名称:OpenTrader,代码行数:32,代码来源:PybacktestChef.py


注:本文中的matplotlib.pylab.title方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。