当前位置: 首页>>代码示例>>Python>>正文


Python pylab.subplot方法代码示例

本文整理汇总了Python中matplotlib.pylab.subplot方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.subplot方法的具体用法?Python pylab.subplot怎么用?Python pylab.subplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.subplot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self, fig, gs, labels=None, limits=None):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])
        self._arrow = None
        if labels:
            if len(labels) == 2:
                self._ax.set_xlabel(labels[0])
                self._ax.set_ylabel(labels[1])
            else:
                raise ValueError("invalid labels %r" % labels)
        if limits:
            if len(limits) == 2 and \
                    len(limits[0]) == 2 and \
                    len(limits[1]) == 2:
                self._ax.set_xlim([limits[0][0], limits[1][0]])
                self._ax.set_ylim([limits[0][1], limits[1][1]])
            else:
                raise ValueError("invalid limits %r" % limits)
        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:23,代码来源:arrow_plotter.py

示例2: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self, fig, gs, format_strings=None, format_dicts=None, labels=None, xlabel=None, ylabel=None, yscale='linear'):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._labels = labels or []
        self._format_strings = format_strings or []
        self._format_dicts = format_dicts or []

        self._ax.set_xlabel(xlabel or 'iteration')
        self._ax.set_ylabel(ylabel or 'loss')
        self._ax.set_yscale(yscale or 'linear')
        self._ax.minorticks_on()

        self._plots = []

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:20,代码来源:loss_plotter.py

示例3: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self, fig, gs, label='mean', color='black', alpha=1.0, min_itr=10):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._label = label
        self._color = color
        self._alpha = alpha
        self._min_itr = min_itr

        self._ts = np.empty((1, 0))
        self._data_mean = np.empty((1, 0))
        self._plots_mean = self._ax.plot([], [], '-x', markeredgewidth=1.0,
                color=self._color, alpha=1.0, label=self._label)[0]

        self._ax.set_xlim(0-0.5, self._min_itr+0.5)
        self._ax.set_ylim(0, 1)
        self._ax.minorticks_on()
        self._ax.legend(loc='upper right', bbox_to_anchor=(1, 1))

        self._init = False

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:26,代码来源:mean_plotter.py

示例4: show_pred

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def show_pred(images, predictions, ground_truth):
    # choose 10 indice from images and visualize them
    indice = [np.random.randint(0, len(images)) for i in range(40)]
    for i in range(0, 40):
        plt.figure()
        plt.subplot(1, 3, 1)
        plt.tight_layout()
        plt.title('deformed image')
        plt.imshow(images[indice[i]])
        plt.subplot(1, 3, 2)
        plt.tight_layout()
        plt.title('predicted mask')
        plt.imshow(predictions[indice[i]])
        plt.subplot(1, 3, 3)
        plt.tight_layout()
        plt.title('ground truth label')
        plt.imshow(ground_truth[indice[i]])
    plt.show()

# Load Data Science Bowl 2018 training dataset 
开发者ID:limingwu8,项目名称:Image-Restoration,代码行数:22,代码来源:dataset.py

示例5: viz_missing_docwordfreq_stats

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def viz_missing_docwordfreq_stats(DocWordFreq_emp, DocWordFreq_model):
  from matplotlib import pylab
  DocWordFreq_missing = np.maximum(DocWordFreq_emp - DocWordFreq_model, 0)

  nnzEmp = count_num_nonzero(DocWordFreq_emp)
  nnzMiss = count_num_nonzero(DocWordFreq_missing)
  frac_nzMiss = nnzMiss / float(nnzEmp)

  nzMissPerDoc = np.sum(DocWordFreq_missing > 0, axis=1)
  CDF_nzMissPerDoc = np.sort(nzMissPerDoc)
  nzMissPerWord = np.sum(DocWordFreq_missing > 0, axis=0)
  CDF_nzMissPerWord = np.sort(nzMissPerWord)

  pylab.subplot(1,2,1)
  pylab.plot(CDF_nzMissPerDoc)
  pylab.ylabel('Num Nonzero Entries in Doc')
  pylab.xlabel('Document rank | frac= %.4f'% (frac_nzMiss))
  pylab.subplot(1,2,2)
  pylab.plot(CDF_nzMissPerWord)
  pylab.ylabel('Num Nonzero Entries per Word')
  pylab.xlabel('Word rank')

  pylab.show(block=True) 
开发者ID:daeilkim,项目名称:refinery,代码行数:25,代码来源:BirthMoveTopicModel.py

示例6: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self):
    self.rewards = 10 * [np.nan]
    self.rewards_bounds = [-10, 10]
    self.last_success = None

    plt.ion()
    self._fig = plt.figure(
        figsize=(9, 12), num='Spriteworld', facecolor='white')
    gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
    self._ax_image = plt.subplot(gs[0])
    self._ax_image.axis('off')

    self._ax_scalar = plt.subplot(gs[1])
    self._ax_scalar.spines['right'].set_visible(False)
    self._ax_scalar.spines['top'].set_visible(False)
    self._ax_scalar.xaxis.set_ticks_position('bottom')
    self._ax_scalar.yaxis.set_ticks_position('left')
    self._setup_callbacks() 
开发者ID:deepmind,项目名称:spriteworld,代码行数:20,代码来源:demo_ui.py

示例7: save_state_images

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def save_state_images(frame_idx, states, net, device="cpu", max_states=200):
    ofs = 0
    p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
    for batch in np.array_split(states, 64):
        states_v = torch.tensor(batch).to(device)
        action_prob = net.apply_softmax(net(states_v)).data.cpu().numpy()
        batch_size, num_actions, _ = action_prob.shape
        for batch_idx in range(batch_size):
            plt.clf()
            for action_idx in range(num_actions):
                plt.subplot(num_actions, 1, action_idx+1)
                plt.bar(p, action_prob[batch_idx, action_idx], width=0.5)
            plt.savefig("states/%05d_%08d.png" % (ofs + batch_idx, frame_idx))
        ofs += batch_size
        if ofs >= max_states:
            break 
开发者ID:PacktPublishing,项目名称:Deep-Reinforcement-Learning-Hands-On,代码行数:18,代码来源:07_dqn_distrib.py

示例8: save_transition_images

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def save_transition_images(batch_size, predicted, projected, next_distr, dones, rewards, save_prefix):
    for batch_idx in range(batch_size):
        is_done = dones[batch_idx]
        reward = rewards[batch_idx]
        plt.clf()
        p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
        plt.subplot(3, 1, 1)
        plt.bar(p, predicted[batch_idx], width=0.5)
        plt.title("Predicted")
        plt.subplot(3, 1, 2)
        plt.bar(p, projected[batch_idx], width=0.5)
        plt.title("Projected")
        plt.subplot(3, 1, 3)
        plt.bar(p, next_distr[batch_idx], width=0.5)
        plt.title("Next state")
        suffix = ""
        if reward != 0.0:
            suffix = suffix + "_%.0f" % reward
        if is_done:
            suffix = suffix + "_done"
        plt.savefig("%s_%02d%s.png" % (save_prefix, batch_idx, suffix)) 
开发者ID:PacktPublishing,项目名称:Deep-Reinforcement-Learning-Hands-On,代码行数:23,代码来源:07_dqn_distrib.py

示例9: plot_valdata

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def plot_valdata(x_val_cuda, knobs_val_cuda, y_val_cuda, y_val_hat_cuda, effect, \
	epoch, loss_val, file_prefix='val_data', num_plots=50, target_size=None):

	x_size = len(x_val_cuda.data.cpu().numpy()[0])
	if target_size is None:
		y_size = len(y_val_cuda.data.cpu().numpy()[0])
	else:
		y_size = target_size
	t_small = range(x_size-y_size, x_size)
	for plot_i in range(0, num_plots):
		x_val = x_val_cuda.data.cpu().numpy()
		knobs_w = effect.knobs_wc( knobs_val_cuda.data.cpu().numpy()[plot_i,:] )
		plt.figure(plot_i,figsize=(6,8))
		titlestr = f'{effect.name} Val data, epoch {epoch+1}, loss_val = {loss_val.item():.3e}\n'
		for i in range(len(effect.knob_names)):
		    titlestr += f'{effect.knob_names[i]} = {knobs_w[i]:.2f}'
		    if i < len(effect.knob_names)-1: titlestr += ', '
		plt.suptitle(titlestr)
		plt.subplot(3, 1, 1)
		plt.plot(x_val[plot_i, :], 'b', label='Input')
		plt.ylim(-1,1)
		plt.xlim(0,x_size)
		plt.legend()
		plt.subplot(3, 1, 2)
		y_val = y_val_cuda.data.cpu().numpy()
		plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
		plt.xlim(0,x_size)
		plt.ylim(-1,1)
		plt.legend()
		plt.subplot(3, 1, 3)
		plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target')
		y_val_hat = y_val_hat_cuda.data.cpu().numpy()
		plt.plot(t_small, y_val_hat[plot_i, -y_size:], c=(0,0.5,0,0.85), label='Predicted')
		plt.ylim(-1,1)
		plt.xlim(0,x_size)
		plt.legend()
		filename = file_prefix + '_' + str(plot_i) + '.png'
		savefig(filename)
	return 
开发者ID:drscotthawley,项目名称:signaltrain,代码行数:41,代码来源:io_methods.py

示例10: plot_feat_hist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def plot_feat_hist(data_name_list, filename=None):
    pylab.clf()
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Density')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, facecolor='green', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:32,代码来源:utils.py

示例11: plot_feat_hist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def plot_feat_hist(data_name_list, filename=None):
    if len(data_name_list) > 1:
        assert filename is not None

    pylab.figure(num=None, figsize=(8, 6))
    num_rows = int(1 + (len(data_name_list) - 1) / 2)
    num_cols = int(1 if len(data_name_list) == 1 else 2)
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Fraction')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name.replace(" ", "_")

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:35,代码来源:utils.py

示例12: plot1D_mat

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def plot1D_mat(a, b, M, title=''):
    """ Plot matrix M  with the source and target 1D distribution

    Creates a subplot with the source distribution a on the left and
    target distribution b on the tot. The matrix M is shown in between.


    Parameters
    ----------
    a : ndarray, shape (na,)
        Source distribution
    b : ndarray, shape (nb,)
        Target distribution
    M : ndarray, shape (na, nb)
        Matrix to plot
    """
    na, nb = M.shape

    gs = gridspec.GridSpec(3, 3)

    xa = np.arange(na)
    xb = np.arange(nb)

    ax1 = pl.subplot(gs[0, 1:])
    pl.plot(xb, b, 'r', label='Target distribution')
    pl.yticks(())
    pl.title(title)

    ax2 = pl.subplot(gs[1:, 0])
    pl.plot(a, xa, 'b', label='Source distribution')
    pl.gca().invert_xaxis()
    pl.gca().invert_yaxis()
    pl.xticks(())

    pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
    pl.imshow(M, interpolation='nearest')
    pl.axis('off')

    pl.xlim((0, nb))
    pl.tight_layout()
    pl.subplots_adjust(wspace=0., hspace=0.2) 
开发者ID:PythonOT,项目名称:POT,代码行数:43,代码来源:plot.py

示例13: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self, fig, gs, num_plots, rows=None, cols=None):
        if cols is None:
            cols = int(np.floor(np.sqrt(num_plots)))
        if rows is None:
            rows = int(np.ceil(float(num_plots)/cols))
        assert num_plots <= rows*cols, 'Too many plots to put into gridspec.'

        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(8, 1, subplot_spec=gs)
        self._gs_legend = self._gs[0:1, 0]
        self._gs_plot   = self._gs[1:8, 0]

        self._ax_legend = plt.subplot(self._gs_legend)
        self._ax_legend.get_xaxis().set_visible(False)
        self._ax_legend.get_yaxis().set_visible(False)

        self._gs_plots = gridspec.GridSpecFromSubplotSpec(rows, cols, subplot_spec=self._gs_plot)
        self._axarr = [plt.subplot(self._gs_plots[i], projection='3d') for i in range(num_plots)]
        self._lims = [None for i in range(num_plots)]
        self._plots = [[] for i in range(num_plots)]

        for ax in self._axarr:
            ax.tick_params(pad=0)
            ax.locator_params(nbins=5)
            for item in (ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()):
                item.set_fontsize(10)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:31,代码来源:plotter_3d.py

示例14: __init__

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def __init__(self, fig, gs, time_window=500, labels=None, alphas=None):
        self._fig = fig
        self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs)
        self._ax = plt.subplot(self._gs[0])

        self._time_window = time_window
        self._labels = labels
        self._alphas = alphas
        self._init = False

        if self._labels:
            self.init(len(self._labels))

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()   # Fixes bug with Qt4Agg backend 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:17,代码来源:realtime_plotter.py

示例15: subplot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import subplot [as 别名]
def subplot(data, name, ylabel):
    fig = plt.figure(figsize=(20, 6))
    ax = plt.subplot(111)
    rep_labels = [str(j) for j in reps]
    x_pos = [i for i, _ in enumerate(rep_labels)]
    X = np.arange(len(data))
    ax_plot = ax.bar(x_pos, data, color=color_map(data_normalizer(data)), width=0.45)

    plt.xticks(x_pos, rep_labels)
    plt.xlabel("Repetitions")
    plt.ylabel(ylabel)

    autolabel(ax, ax_plot)
    plt.savefig(name + ".png") 
开发者ID:thouska,项目名称:spotpy,代码行数:16,代码来源:dds_parallel_plot.py


注:本文中的matplotlib.pylab.subplot方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。