本文整理汇总了Python中matplotlib.pylab.show方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.show方法的具体用法?Python pylab.show怎么用?Python pylab.show使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.show方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: vPlotEquityCurves
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def vPlotEquityCurves(oBt, mOhlc, oChefModule,
sPeriod='W',
close_label='C',):
import matplotlib
import matplotlib.pylab as pylab
# FixMe:
matplotlib.rcParams['figure.figsize'] = (10, 5)
# FixMe: derive the period from the sTimeFrame
oChefModule.vPlotEquity(oBt.equity, mOhlc, sTitle="%s\nEquity" % repr(oBt),
sPeriod=sPeriod,
close_label=close_label,
)
pylab.show()
oBt.vPlotTrades()
pylab.legend(loc='lower left')
pylab.show()
## oBt.vPlotTrades(subset=slice(sYear+'-05-01', sYear+'-09-01'))
## pylab.legend(loc='lower left')
## pylab.show()
示例2: test_plotting
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def test_plotting(self):
"""
This test is just to document current use in libraries in case of refactoring
"""
corrs = np.array([.6, .2, .1, .001])
errs = np.array([.1, .05, .04, .0005])
fig, ax1 = plt.subplots(1, 1, figsize=(5, 5))
cca.plot_correlations(corrs, errs, ax=ax1, color='blue')
cca.plot_correlations(corrs * .1, errs, ax=ax1, color='orange')
# Shuffle data
# ...
# fig, ax1 = plt.subplots(1,1,figsize(10,10))
# plot_correlations(corrs, ... , ax=ax1, color='blue')
# plot_correlations(shuffled_coors, ..., ax=ax1, color='red')
# plt.show()
示例3: plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot(self, words, num_points=None):
if not num_points:
num_points = len(words)
embeddings = self.get_words_embeddings(words)
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(embeddings[:num_points, :])
assert two_d_embeddings.shape[0] >= len(words), 'More labels than embeddings'
pylab.figure(figsize=(15, 15)) # in inches
for i, label in enumerate(words[:num_points]):
x, y = two_d_embeddings[i, :]
pylab.scatter(x, y)
pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
ha='right', va='bottom')
pylab.show()
示例4: plot_confusion_matrix
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_confusion_matrix(cm, genre_list, name, title):
pylab.clf()
pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
ax = pylab.axes()
ax.set_xticks(range(len(genre_list)))
ax.set_xticklabels(genre_list)
ax.xaxis.set_ticks_position("bottom")
ax.set_yticks(range(len(genre_list)))
ax.set_yticklabels(genre_list)
pylab.title(title)
pylab.colorbar()
pylab.grid(False)
pylab.show()
pylab.xlabel('Predicted class')
pylab.ylabel('True class')
pylab.grid(False)
pylab.savefig(
os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:20,代码来源:utils.py
示例5: plot_equilibration
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_equilibration(temperature_next, strain_lst, nve_run_time_steps, project_parameter, debug_plot=True):
if debug_plot:
for strain in strain_lst:
job_name = get_nve_job_name(
temperature_next=temperature_next,
strain=strain,
steps_lst=project_parameter['nve_run_time_steps_lst'],
nve_run_time_steps=nve_run_time_steps
)
ham_nve = project_parameter['project'].load(job_name)
plt.plot(ham_nve['output/generic/temperature'], label='strain: ' + str(strain))
plt.axhline(np.mean(ham_nve['output/generic/temperature'][-20:]), linestyle='--', color='red')
plt.axvline(range(len(ham_nve['output/generic/temperature']))[-20], linestyle='--', color='black')
plt.legend()
plt.xlabel('timestep')
plt.ylabel('Temperature K')
plt.legend()
plt.show()
示例6: check_for_holes
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def check_for_holes(temperature_next, strain_value_lst, nve_run_time_steps, project_parameter, debug_plot=True):
max_lst, mean_lst = get_voronoi_volume(
temperature_next=temperature_next,
strain_lst=strain_value_lst,
nve_run_time_steps=nve_run_time_steps,
project_parameter=project_parameter
)
if debug_plot:
plt.plot(strain_value_lst, mean_lst, label='mean')
plt.plot(strain_value_lst, max_lst, label='max')
plt.axhline(np.mean(mean_lst) * 2, color='black', linestyle='--')
plt.legend()
plt.xlabel('Strain')
plt.ylabel('Voronoi Volume')
plt.show()
return np.array(max_lst) < np.mean(mean_lst) * 2
示例7: __init__
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def __init__(self, name = "unknown", data = -1, is_show = False):
self.name = name
self.data = data
self.size = np.shape(self.data)
self.is_show = is_show
self.color_space = "unknown"
self.bayer_pattern = "unknown"
self.channel_gain = (1.0, 1.0, 1.0, 1.0)
self.bit_depth = 0
self.black_level = (0, 0, 0, 0)
self.white_level = (1, 1, 1, 1)
self.color_matrix = [[1., .0, .0],\
[.0, 1., .0],\
[.0, .0, 1.]] # xyz2cam
self.min_value = np.min(self.data)
self.max_value = np.max(self.data)
self.data_type = self.data.dtype
# Display image only isShow = True
if (self.is_show):
plt.imshow(self.data)
plt.show()
示例8: plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot(self):
try:
import pandas as pd
import matplotlib.pylab as plt
df = pd.DataFrame(self.history).set_index(['id', 'generation']).fillna(0)
population_size = sum(df.iloc[0].values)
n_populations = df.reset_index()['id'].nunique()
fig, axes = plt.subplots(nrows=n_populations, figsize=(12, 2*n_populations),
sharex='all', sharey='all', squeeze=False)
for row, (_, pop) in zip(axes, df.groupby('id')):
ax = row[0]
pop.reset_index(level='id', drop=True).plot(ax=ax)
ax.set_ylim([0, population_size])
ax.set_xlabel('iteration')
ax.set_ylabel('# w/ preference')
if n_populations > 1:
for i in range(0, df.reset_index().generation.max(), 50):
ax.axvline(i)
plt.show()
except ImportError:
print("If you install matplotlib and pandas you will get a pretty plot.")
示例9: plot_pr_curve
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
"""
Function that plots the PR-curve.
Args:
pr_curve: the values of precision for each recall value
title: the title of the plot
"""
plt.figure(figsize=(16, 9))
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
plt.grid(True, linestyle='dotted')
plt.xlabel('Recall', color='k', fontsize=27)
plt.ylabel('Precision', color='k', fontsize=27)
plt.yticks(color='k', fontsize=20)
plt.xticks(color='k', fontsize=20)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(title, color='k', fontsize=27)
plt.tight_layout()
plt.show()
示例10: plot_trajectory
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_trajectory(name):
STEPS = 600
DELTA = 1 if name != 'linear' else 0.1
trajectory = create_trajectory(name, STEPS)
x = [trajectory.get_position_at(i * DELTA).x for i in range(STEPS)]
y = [trajectory.get_position_at(i * DELTA).y for i in range(STEPS)]
trajectory_fig, trajectory_plot = plt.subplots(1, 1)
trajectory_plot.plot(x, y, label='trajectory', lw=3)
trajectory_plot.set_title(name.title() + ' Trajectory', fontsize=20)
trajectory_plot.set_xlabel(r'$x{\rm[m]}$', fontsize=18)
trajectory_plot.set_ylabel(r'$y{\rm[m]}$', fontsize=18)
trajectory_plot.legend(loc=0)
trajectory_plot.grid()
plt.show()
示例11: plotKChart
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
kList = []
misRateList = []
for k, misClassNum in misClassDict.iteritems():
kList.append(k)
misRateList.append(1.0 - 1.0/k*misClassNum)
fig = plt.figure(saveFigPath)
plt.plot(kList, misRateList, 'r--')
plt.title(saveFigPath)
plt.xlabel('k Num.')
plt.ylabel('Misclassified Rate')
plt.legend(saveFigPath)
plt.grid(True)
plt.savefig(saveFigPath)
plt.show()
################################### PART3 TEST ########################################
# 例子
示例12: plot_xz_landscape
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_xz_landscape(self):
"""
plots the xz landscape, i.e., how your vna frequency span changes with respect to the x vector
:return: None
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.xzlandscape_func:
y_values = self.xzlandscape_func(self.spec.x_vec)
plt.plot(self.spec.x_vec, y_values, 'C1')
plt.fill_between(self.spec.x_vec, y_values+self.z_span/2., y_values-self.z_span/2., color='C0', alpha=0.5)
plt.xlim((self.spec.x_vec[0], self.spec.x_vec[-1]))
plt.ylim((self.xz_freqpoints[0], self.xz_freqpoints[-1]))
plt.show()
else:
print('No xz funcion generated. Use landscape.generate_xz_function')
示例13: plot_fit_function
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def plot_fit_function(self, num_points=100):
'''
try:
x_coords = np.linspace(self.x_vec[0], self.x_vec[-1], num_points)
except Exception as message:
print 'no x axis information specified', message
return
'''
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.landscape:
for trace in self.landscape:
try:
# plt.clear()
plt.plot(self.x_vec, trace)
plt.fill_between(self.x_vec, trace + float(self.span) / 2, trace - float(self.span) / 2, alpha=0.5)
except Exception:
print('invalid trace...skip')
plt.axhspan(self.y_vec[0], self.y_vec[-1], facecolor='0.5', alpha=0.5)
plt.show()
else:
print('No trace generated.')
示例14: show_pred
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def show_pred(images, predictions, ground_truth):
# choose 10 indice from images and visualize them
indice = [np.random.randint(0, len(images)) for i in range(40)]
for i in range(0, 40):
plt.figure()
plt.subplot(1, 3, 1)
plt.tight_layout()
plt.title('deformed image')
plt.imshow(images[indice[i]])
plt.subplot(1, 3, 2)
plt.tight_layout()
plt.title('predicted mask')
plt.imshow(predictions[indice[i]])
plt.subplot(1, 3, 3)
plt.tight_layout()
plt.title('ground truth label')
plt.imshow(ground_truth[indice[i]])
plt.show()
# Load Data Science Bowl 2018 training dataset
示例15: train
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import show [as 别名]
def train(self):
"""
训练
"""
training_set,test_set, training_inputs, training_target, test_inputs, test_targets = self.getData()
eth_model = self.buildModel(training_inputs, 1, 20)
training_target = (training_set["eth_Close"][self.window_len:].values /
training_set['eth_Close'][:-self.window_len].values) - 1
eth_history = eth_model.fit(training_inputs, training_target,
epochs=self.epochs, batch_size=self.batch_size,
verbose=self.verbose, shuffle=True)
fig, ax1 = plt.subplots(1, 1)
ax1.plot(eth_history.epoch, eth_history.history['loss'])
ax1.set_title('Training Loss')
ax1.set_ylabel('MAE',fontsize=12)
ax1.set_xlabel('# Epochs',fontsize=12)
plt.show()