本文整理汇总了Python中matplotlib.pylab.setp方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.setp方法的具体用法?Python pylab.setp怎么用?Python pylab.setp使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.setp方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_box_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import setp [as 别名]
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses):
num_methods = len(methods)
x_ticks = np.linspace(0., 1., num_methods)
width = 0.3 / num_methods
spacing = 0.3 / num_methods
fig, ax1 = plt.subplots()
ax1.set_ylabel('RMSE position [m]', color='b')
ax1.tick_params('y', colors='b')
fig.suptitle(
"Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24')
bp_position = ax1.boxplot(position_rmses, 0, '',
positions=x_ticks - spacing, widths=width)
plt.setp(bp_position['boxes'], color='blue', linewidth=line_width)
plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width)
plt.setp(bp_position['fliers'], color='blue',
marker='+', linewidth=line_width)
plt.setp(bp_position['caps'], color='blue', linewidth=line_width)
plt.setp(bp_position['medians'], color='blue', linewidth=line_width)
ax2 = ax1.twinx()
ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g')
ax2.tick_params('y', colors='g')
bp_orientation = ax2.boxplot(
orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width)
plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width)
plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width)
plt.setp(bp_orientation['fliers'], color='green',
marker='+')
plt.setp(bp_orientation['caps'], color='green', linewidth=line_width)
plt.setp(bp_orientation['medians'], color='green', linewidth=line_width)
plt.xticks(x_ticks, methods)
plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing)
plt.show()
示例2: generate_time_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import setp [as 别名]
def generate_time_plot(methods, datasets, runtimes_per_method, colors):
num_methods = len(methods)
num_datasets = len(datasets)
x_ticks = np.linspace(0., 1., num_methods)
width = 0.6 / num_methods / num_datasets
spacing = 0.4 / num_methods / num_datasets
fig, ax1 = plt.subplots()
ax1.set_ylabel('Time [s]', color='b')
ax1.tick_params('y', colors='b')
ax1.set_yscale('log')
fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24')
handles = []
for i, dataset in enumerate(datasets):
runtimes = [runtimes_per_method[dataset][method] for method in methods]
bp = ax1.boxplot(
runtimes, 0, '',
positions=(x_ticks + (i - num_datasets / 2. + 0.5) *
spacing * 2),
widths=width)
plt.setp(bp['boxes'], color=colors[i], linewidth=line_width)
plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width)
plt.setp(bp['fliers'], color=colors[i],
marker='+', linewidth=line_width)
plt.setp(bp['medians'], color=colors[i],
marker='+', linewidth=line_width)
plt.setp(bp['caps'], color=colors[i], linewidth=line_width)
handles.append(mpatches.Patch(color=colors[i], label=dataset))
plt.legend(handles=handles, loc=2)
plt.xticks(x_ticks, methods)
plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets,
x_ticks[-1] + 2.5 * spacing * num_datasets)
plt.show()
示例3: draw_heatmap
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import setp [as 别名]
def draw_heatmap(data, row_labels=None, col_labels=None, ax=None,
cbar_kw=None, cbar_label="", **kwargs):
"""
Create a draw_heatmap from a numpy array and two lists of labels.
.. seealso:: https://matplotlib.org/gallery/images_contours_and_fields/image_annotated_heatmap.html
:param data: A 2D numpy array of shape (N,M)
:param row_labels: A list or array of length N with the labels for the rows
:param col_labels: A list or array of length M with the labels for the columns
:param ax: A matplotlib.axes.Axes instance to which the draw_heatmap is plotted.
If not provided, use current axes or create a new one.
:param cbar_kw: A dictionary with arguments to :meth:`matplotlib.Figure.colorbar`.
:param cbar_label: The label for the colorbar
"""
cbar_kw = {} if cbar_kw is None else cbar_kw
ax = plt.figure(figsize=data.shape[::-1]).gca() if ax is None else ax
# Plot the draw_heatmap
im = ax.imshow(data, **kwargs)
# Create colorbar
cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
cbar.ax.set_ylabel(cbar_label, rotation=-90, va='bottom')
# We want to show all ticks and label them with the respective list entries.
if col_labels is not None:
ax.set_xticks(np.arange(data.shape[1]))
ax.set_xticklabels(col_labels, va='center')
else:
ax.set_xticks([])
if row_labels is not None:
ax.set_yticks(np.arange(data.shape[0]))
ax.set_yticklabels(row_labels, va='center')
else:
ax.set_yticks([])
# Let the horizontal axes labeling appear on top.
ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=90, ha='left', rotation_mode='anchor')
# Turn spines off and create white grid.
for _, spine in ax.spines.items():
spine.set_visible(False)
ax.grid(False) # for the general grid
# grid splitting particular color-box, kind of padding
ax.set_xticks(np.arange(data.shape[1] + 1) - 0.5, minor=True)
ax.set_yticks(np.arange(data.shape[0] + 1) - 0.5, minor=True)
ax.grid(which='minor', color='w', linestyle='-', linewidth=3)
ax.tick_params(which='minor', bottom=False, left=False)
return im, cbar
示例4: OnCreateResidualPlot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import setp [as 别名]
def OnCreateResidualPlot(self,fig,canvas):
"""
Create a plot with main data, residuals and (optionally) histogram of residuals, using
subplot2grid in matplotlib
"""
fig.clf()
print('Debugging...')
print(self.fit_datatype)
print(self.y_optimised)
#normalised_residuals = False
if self.normalised_residuals:
### not done yet! -- requires error bars in imported data
residuals = 100*(self.y_fit_array-self.y_optimised)
else:
residuals = 100*(self.y_fit_array-self.y_optimised)
fig = plt.figure(2)
yy = 4
xx = 6
if self.residual_histogram:
ax_main = plt.subplot2grid((yy,xx),(0,0),colspan=xx-1,rowspan=yy-1)
ax_residual = plt.subplot2grid((yy,xx),(yy-1,0),colspan=xx-1,sharex=ax_main)
ax_hist = plt.subplot2grid((yy,xx), (yy-1,xx-1), sharey=ax_residual)
plt.setp(ax_hist.get_yticklabels(),visible=False)
ax_hist.set_xticklabels([])
else:
ax_main = plt.subplot2grid((yy,xx),(0,0),colspan=xx,rowspan=yy-1)
ax_residual = plt.subplot2grid((yy,xx),(yy-1,0),colspan=xx,sharex=ax_main)
plt.setp(ax_main.get_xticklabels(),visible=False)
ax_residual.set_xlabel('Detuning (GHz)')
ax_residual.set_ylabel('Residuals (%)')
ax_main.set_ylabel(self.expt_type)
ax_main.plot(self.x_fit_array,self.y_fit_array,color=d_olive)
print(len(self.x_fit_array), len(self.y_optimised))
ax_main.plot(self.x_fit_array,self.y_optimised)
ax_residual.plot(self.x_fit_array,residuals,lw=1.25)
ax_residual.axhline(0,color='k',linestyle='dashed')
if self.residual_histogram:
bins = 25
ax_hist.hist(residuals, bins=bins, orientation='horizontal')
ax_hist.axhline(0,color='k', linestyle='dashed')
ax_main.autoscale_view(tight=True)
self._draw_fig(fig,canvas)