当前位置: 首页>>代码示例>>Python>>正文


Python pylab.savefig方法代码示例

本文整理汇总了Python中matplotlib.pylab.savefig方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.savefig方法的具体用法?Python pylab.savefig怎么用?Python pylab.savefig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.savefig方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate_png_chess_dp_vertex

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def generate_png_chess_dp_vertex(self):
    """Produces pictures of the dominant product vertex a chessboard convention"""
    import matplotlib.pylab as plt
    plt.ioff()
    dab2v = self.get_dp_vertex_doubly_sparse()
    for i, ab in enumerate(dab2v): 
        fname = "chess-v-{:06d}.png".format(i)
        print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname)
        if type(ab) != 'numpy.ndarray': ab = ab.toarray()
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean)
        plt.colorbar()
        plt.savefig(fname)
        plt.close(fig) 
开发者ID:pyscf,项目名称:pyscf,代码行数:18,代码来源:prod_basis.py

示例2: plot_metrics

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_metrics(metric_list, save_path=None):
    # runs through each test case and adds a set of bars to a plot.  Saves

    f, (ax1) = plt.subplots(1, 1)
    plt.grid(True)

    print_metrics(metric_list)

    bar_metrics(metric_list[0], ax1, index=0)
    bar_metrics(metric_list[1], ax1, index=1)
    bar_metrics(metric_list[2], ax1, index=2)

    if save_path is None:
        save_path = "img/bar_" + key + ".png"

    plt.savefig(save_path, dpi=400) 
开发者ID:RasaHQ,项目名称:rasa_lookup_demo,代码行数:18,代码来源:run_lookup.py

示例3: plotallfuncs

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.func_name)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.func_name)
    pl.ion() 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:22,代码来源:testfuncs.py

示例4: plot_feat_importance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:utils.py

示例5: plot_entropy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py

示例6: plot_confusion_matrix

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:20,代码来源:utils.py

示例7: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py

示例8: plot_feat_importance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:utils.py

示例9: plotallfuncs

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.__name__)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.__name__)
    pl.ion() 
开发者ID:miloharper,项目名称:neural-network-animation,代码行数:22,代码来源:testfuncs.py

示例10: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
    """绘制R/P曲线"""
    try:
        from matplotlib import pylab
        pylab.figure(num=None, figsize=(6, 5))
        pylab.xlim([0.0, 1.0])
        pylab.ylim([0.0, 1.0])
        pylab.xlabel('Recall')
        pylab.ylabel('Precision')
        pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
        pylab.fill_between(recall, precision, alpha=0.5)
        pylab.grid(True, linestyle='-', color='0.75')
        pylab.plot(recall, precision, lw=1)
        pylab.savefig(figure_path)
    except Exception as e:
        print("save image error with matplotlib")
        pass 
开发者ID:shibing624,项目名称:text-classifier,代码行数:19,代码来源:evaluate.py

示例11: plotKChart

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# 例子 
开发者ID:ysh329,项目名称:statistical-learning-methods-note,代码行数:21,代码来源:kNN.py

示例12: drawMapqHistogram

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def drawMapqHistogram(self):
        """ From matplot lib plots a Mappping qualty histogram
        """
        #1. PLOT BUILDING
        readsMapq = self.mapping_stats.mapping_quality_reads
       
        mapqList = list(range(len(readsMapq)))
     
        matplotlib.pyplot.ioff()
        figure = plt.figure()
        plt.bar(mapqList,readsMapq,width=1,align='center',facecolor='blue', alpha=0.75)
        plt.xlabel('MapQ')
        plt.ylabel('Fragments')
        plt.title('MapQ Histogram')
        plt.axis([0, 60,min(readsMapq), max(readsMapq)])
        plt.grid(True)
        
        pylab.savefig(self.png_mapq_histogram)
        
        plt.close(figure) 
开发者ID:heathsc,项目名称:gemBS,代码行数:22,代码来源:reportStats.py

示例13: main

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def main():
  args = parse_args()
  jobpath, taskids = parse_jobpath_and_taskids(args)

  for taskid in taskids:
    taskpath = os.path.join(jobpath, taskid)
    if args.lap is not None:
      prefix, bLap = ModelReader.getPrefixForLapQuery(taskpath, args.lap)      
      if bLap != args.lap:
        print 'Using saved lap: ', bLap
    else:
      prefix = 'Best' # default

    hmodel = ModelReader.load_model(taskpath, prefix)
    plotModelInNewFigure(jobpath, hmodel, args)
    if args.savefilename is not None:
      pylab.show(block=False)
      pylab.savefig(args.savefilename % (taskid))
  
  if args.savefilename is None:
    pylab.show(block=True) 
开发者ID:daeilkim,项目名称:refinery,代码行数:23,代码来源:PlotComps.py

示例14: matrix

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def matrix(msg, mobj):
    """
    Interpret a user string, convert it to a list and graph it as a matrix
    Uses ast.literal_eval to parse input into a list
    """
    fname = bot_data("{}.png".format(mobj.author.id))
    try:
        list_input = literal_eval(msg)
        if not isinstance(list_input, list):
            raise ValueError("Not a list")
        m = np_matrix(list_input)
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(m, interpolation='nearest', cmap=plt.cm.ocean)
        plt.colorbar()
        plt.savefig(fname)
        await client.send_file(mobj.channel, fname)
        f_remove(fname)
        return
    except Exception as ex:
        logger("!matrix: {}".format(ex))
    return await client.send_message(mobj.channel, "Failed to render graph") 
开发者ID:sleibrock,项目名称:discord-bots,代码行数:25,代码来源:graph-bot.py

示例15: plot_performance_profiles

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import savefig [as 别名]
def plot_performance_profiles(problems, solvers):
    """
    Plot performance profiles in matplotlib for specified problems and solvers
    """
    # Remove OSQP polish solver
    solvers = solvers.copy()
    for s in solvers:
        if "polish" in s:
            solvers.remove(s)

    df = pd.read_csv('./results/%s/performance_profiles.csv' % problems)
    plt.figure(0)
    for solver in solvers:
        plt.plot(df["tau"], df[solver], label=solver)
    plt.xlim(1., 10000.)
    plt.ylim(0., 1.)
    plt.xlabel(r'Performance ratio $\tau$')
    plt.ylabel('Ratio of problems solved')
    plt.xscale('log')
    plt.legend()
    plt.grid()
    plt.show(block=False)
    results_file = './results/%s/%s.png' % (problems, problems)
    print("Saving plots to %s" % results_file)
    plt.savefig(results_file) 
开发者ID:oxfordcontrol,项目名称:osqp_benchmarks,代码行数:27,代码来源:benchmark.py


注:本文中的matplotlib.pylab.savefig方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。