本文整理汇总了Python中matplotlib.pylab.plot方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.plot方法的具体用法?Python pylab.plot怎么用?Python pylab.plot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.plot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: error_bar_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def error_bar_plot(experiment_data, results, title="", ylabel=""):
true_effect = experiment_data.true_effects.mean()
estimators = list(results.keys())
x = list(estimators)
y = [results[estimator].ate for estimator in estimators]
cis = [
np.array(results[estimator].ci) - results[estimator].ate
if results[estimator].ci is not None
else [0, 0]
for estimator in estimators
]
err = [[abs(ci[0]) for ci in cis], [abs(ci[1]) for ci in cis]]
plt.figure(figsize=(12, 5))
(_, caps, _) = plt.errorbar(x, y, yerr=err, fmt="o", markersize=8, capsize=5)
for cap in caps:
cap.set_markeredgewidth(2)
plt.plot(x, [true_effect] * len(x), label="True Effect")
plt.legend(fontsize=12, loc="lower right")
plt.ylabel(ylabel)
plt.title(title)
示例2: plot_entropy
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_entropy():
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
title = "Entropy $H(X)$"
pylab.title(title)
pylab.xlabel("$P(X=$coin will show heads up$)$")
pylab.ylabel("$H(X)$")
pylab.xlim(xmin=0, xmax=1.1)
x = np.arange(0.001, 1, 0.001)
y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
pylab.plot(x, y)
# pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
# [0,1,2,3,4]])
pylab.autoscale(tight=True)
pylab.grid(True)
filename = "entropy_demo.png"
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py
示例3: plot_roc
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
pylab.grid(True)
pylab.plot([0, 1], [0, 1], 'k--')
pylab.plot(fpr, tpr)
pylab.fill_between(fpr, tpr, alpha=0.5)
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('False Positive Rate')
pylab.ylabel('True Positive Rate')
pylab.title('ROC curve (AUC = %0.2f) / %s' %
(auc_score, label), verticalalignment="bottom")
pylab.legend(loc="lower right")
filename = name.replace(" ", "_")
pylab.savefig(
os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py
示例4: plot_fermi_dirac
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_fermi_dirac(self):
"""
Plots the obtained eigenvalue vs occupation plot
"""
try:
import matplotlib.pylab as plt
except ModuleNotFoundError:
import matplotlib.pyplot as plt
arg = np.argsort(self.eigenvalues)
plt.plot(
self.eigenvalues[arg], self.occupancies[arg], linewidth=2.0, color="blue"
)
plt.axvline(self.efermi, linewidth=2.0, linestyle="dashed", color="black")
plt.xlabel("Energies (eV)")
plt.ylabel("Occupancy")
return plt
示例5: plot_total_dos
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_total_dos(self, **kwargs):
"""
Plots the total DOS
Args:
**kwargs: Variables for matplotlib.pylab.plot customization (linewidth, linestyle, etc.)
Returns:
matplotlib.pylab.plot
"""
try:
import matplotlib.pylab as plt
except ImportError:
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(6, 4))
ax1 = fig.add_subplot(111)
ax1.set_xlabel("E (eV)", fontsize=14)
ax1.set_ylabel("DOS", fontsize=14)
plt.fill_between(self.energies, self.t_dos, **kwargs)
return plt
示例6: plot_orbital_resolved_dos
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_orbital_resolved_dos(self, **kwargs):
"""
Plots the orbital resolved DOS
Args:
**kwargs: Variable for matplotlib.pylab.plot customization (linewidth, linestyle, etc.)
Returns:
matplotlib.pylab.plot
"""
try:
import matplotlib.pylab as plt
except ImportError:
import matplotlib.pyplot as plt
if not (self.es_obj.grand_dos_matrix is not None):
raise NoResolvedDosError(
"Can not plot the orbital resolved dos since resolved dos values are not"
" available"
)
plot = self.plot_total_dos()
for key, val in self.orbital_dict.items():
r_dos = self.get_orbital_resolved_dos(val)
plt.plot(self.energies, r_dos, label=key, **kwargs)
plot.legend()
return plot
示例7: plot_equilibration
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_equilibration(temperature_next, strain_lst, nve_run_time_steps, project_parameter, debug_plot=True):
if debug_plot:
for strain in strain_lst:
job_name = get_nve_job_name(
temperature_next=temperature_next,
strain=strain,
steps_lst=project_parameter['nve_run_time_steps_lst'],
nve_run_time_steps=nve_run_time_steps
)
ham_nve = project_parameter['project'].load(job_name)
plt.plot(ham_nve['output/generic/temperature'], label='strain: ' + str(strain))
plt.axhline(np.mean(ham_nve['output/generic/temperature'][-20:]), linestyle='--', color='red')
plt.axvline(range(len(ham_nve['output/generic/temperature']))[-20], linestyle='--', color='black')
plt.legend()
plt.xlabel('timestep')
plt.ylabel('Temperature K')
plt.legend()
plt.show()
示例8: check_for_holes
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def check_for_holes(temperature_next, strain_value_lst, nve_run_time_steps, project_parameter, debug_plot=True):
max_lst, mean_lst = get_voronoi_volume(
temperature_next=temperature_next,
strain_lst=strain_value_lst,
nve_run_time_steps=nve_run_time_steps,
project_parameter=project_parameter
)
if debug_plot:
plt.plot(strain_value_lst, mean_lst, label='mean')
plt.plot(strain_value_lst, max_lst, label='max')
plt.axhline(np.mean(mean_lst) * 2, color='black', linestyle='--')
plt.legend()
plt.xlabel('Strain')
plt.ylabel('Voronoi Volume')
plt.show()
return np.array(max_lst) < np.mean(mean_lst) * 2
示例9: plot_efrontier
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_efrontier(self):
"""Plots the Efficient Frontier."""
if self.efrontier is None:
# compute efficient frontier first
self.efficient_frontier()
plt.plot(
self.efrontier[:, 0],
self.efrontier[:, 1],
linestyle="-.",
color="black",
lw=2,
label="Efficient Frontier",
)
plt.title("Efficient Frontier")
plt.xlabel("Volatility")
plt.ylabel("Expected Return")
plt.legend()
示例10: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
"""绘制R/P曲线"""
try:
from matplotlib import pylab
pylab.figure(num=None, figsize=(6, 5))
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
pylab.fill_between(recall, precision, alpha=0.5)
pylab.grid(True, linestyle='-', color='0.75')
pylab.plot(recall, precision, lw=1)
pylab.savefig(figure_path)
except Exception as e:
print("save image error with matplotlib")
pass
示例11: plot_pr_curve
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
"""
Function that plots the PR-curve.
Args:
pr_curve: the values of precision for each recall value
title: the title of the plot
"""
plt.figure(figsize=(16, 9))
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
plt.grid(True, linestyle='dotted')
plt.xlabel('Recall', color='k', fontsize=27)
plt.ylabel('Precision', color='k', fontsize=27)
plt.yticks(color='k', fontsize=20)
plt.xticks(color='k', fontsize=20)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(title, color='k', fontsize=27)
plt.tight_layout()
plt.show()
示例12: plotKChart
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
kList = []
misRateList = []
for k, misClassNum in misClassDict.iteritems():
kList.append(k)
misRateList.append(1.0 - 1.0/k*misClassNum)
fig = plt.figure(saveFigPath)
plt.plot(kList, misRateList, 'r--')
plt.title(saveFigPath)
plt.xlabel('k Num.')
plt.ylabel('Misclassified Rate')
plt.legend(saveFigPath)
plt.grid(True)
plt.savefig(saveFigPath)
plt.show()
################################### PART3 TEST ########################################
# 例子
示例13: plot_xz_landscape
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_xz_landscape(self):
"""
plots the xz landscape, i.e., how your vna frequency span changes with respect to the x vector
:return: None
"""
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.xzlandscape_func:
y_values = self.xzlandscape_func(self.spec.x_vec)
plt.plot(self.spec.x_vec, y_values, 'C1')
plt.fill_between(self.spec.x_vec, y_values+self.z_span/2., y_values-self.z_span/2., color='C0', alpha=0.5)
plt.xlim((self.spec.x_vec[0], self.spec.x_vec[-1]))
plt.ylim((self.xz_freqpoints[0], self.xz_freqpoints[-1]))
plt.show()
else:
print('No xz funcion generated. Use landscape.generate_xz_function')
示例14: plot_fit_function
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def plot_fit_function(self, num_points=100):
'''
try:
x_coords = np.linspace(self.x_vec[0], self.x_vec[-1], num_points)
except Exception as message:
print 'no x axis information specified', message
return
'''
if not qkit.module_available("matplotlib"):
raise ImportError("matplotlib not found.")
if self.landscape:
for trace in self.landscape:
try:
# plt.clear()
plt.plot(self.x_vec, trace)
plt.fill_between(self.x_vec, trace + float(self.span) / 2, trace - float(self.span) / 2, alpha=0.5)
except Exception:
print('invalid trace...skip')
plt.axhspan(self.y_vec[0], self.y_vec[-1], facecolor='0.5', alpha=0.5)
plt.show()
else:
print('No trace generated.')
示例15: process_degree_distribution
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import plot [as 别名]
def process_degree_distribution(N, Pk, color, Psi, DPsi, symbol, label, count):
report_times = scipy.linspace(0,30,3000)
sums = 0*report_times
for cnt in range(count):
G = generate_network(Pk, N)
t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
plt.plot(t, I*1./N, '-', color = color,
alpha = 0.1, linewidth=1)
subsampled_I = EoN.subsample(report_times, t, I)
sums += subsampled_I*1./N
ave = sums/count
plt.plot(report_times, ave, color = 'k')
#Do EBCM
N= G.order()#N is arbitrary, but included because our implementation of EBCM assumes N is given.
t, S, I, R = EoN.EBCM_uniform_introduction(N, Psi, DPsi, tau, gamma, rho, tmin=0, tmax=10, tcount = 41)
plt.plot(t, I/N, symbol, color = color, markeredgecolor='k', label=label)
for cnt in range(3): #do 3 highlighted simulations
G = generate_network(Pk, N)
t, S, I, R = EoN.fast_SIR(G, tau, gamma, rho=rho)
plt.plot(t, I*1./N, '-', color = 'k', linewidth=0.1)