当前位置: 首页>>代码示例>>Python>>正文


Python pylab.grid方法代码示例

本文整理汇总了Python中matplotlib.pylab.grid方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.grid方法的具体用法?Python pylab.grid怎么用?Python pylab.grid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.grid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_metrics

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_metrics(metric_list, save_path=None):
    # runs through each test case and adds a set of bars to a plot.  Saves

    f, (ax1) = plt.subplots(1, 1)
    plt.grid(True)

    print_metrics(metric_list)

    bar_metrics(metric_list[0], ax1, index=0)
    bar_metrics(metric_list[1], ax1, index=1)
    bar_metrics(metric_list[2], ax1, index=2)

    if save_path is None:
        save_path = "img/bar_" + key + ".png"

    plt.savefig(save_path, dpi=400) 
开发者ID:RasaHQ,项目名称:rasa_lookup_demo,代码行数:18,代码来源:run_lookup.py

示例2: plot_clustering

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
    pylab.figure(num=None, figsize=(8, 6))
    if km:
        pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
    else:
        pylab.scatter(x, y, s=50)

    pylab.title(title)
    pylab.xlabel("Occurrence word 1")
    pylab.ylabel("Occurrence word 2")

    pylab.autoscale(tight=True)
    pylab.ylim(ymin=0, ymax=1)
    pylab.xlim(xmin=0, xmax=1)
    pylab.grid(True, linestyle='-', color='0.75')

    return pylab 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:plot_kmeans_example.py

示例3: plot_entropy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py

示例4: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py

示例5: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
    """绘制R/P曲线"""
    try:
        from matplotlib import pylab
        pylab.figure(num=None, figsize=(6, 5))
        pylab.xlim([0.0, 1.0])
        pylab.ylim([0.0, 1.0])
        pylab.xlabel('Recall')
        pylab.ylabel('Precision')
        pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
        pylab.fill_between(recall, precision, alpha=0.5)
        pylab.grid(True, linestyle='-', color='0.75')
        pylab.plot(recall, precision, lw=1)
        pylab.savefig(figure_path)
    except Exception as e:
        print("save image error with matplotlib")
        pass 
开发者ID:shibing624,项目名称:text-classifier,代码行数:19,代码来源:evaluate.py

示例6: plot_pr_curve

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
    """
      Function that plots the PR-curve.

      Args:
        pr_curve: the values of precision for each recall value
        title: the title of the plot
    """
    plt.figure(figsize=(16, 9))
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
    plt.plot(np.arange(0.0, 1.05, 0.05),
             pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
    plt.grid(True, linestyle='dotted')
    plt.xlabel('Recall', color='k', fontsize=27)
    plt.ylabel('Precision', color='k', fontsize=27)
    plt.yticks(color='k', fontsize=20)
    plt.xticks(color='k', fontsize=20)
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title(title, color='k', fontsize=27)
    plt.tight_layout()
    plt.show() 
开发者ID:MKLab-ITI,项目名称:ndvr-dml,代码行数:25,代码来源:utils.py

示例7: plotKChart

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
        kList = []
        misRateList = []
        for k, misClassNum in misClassDict.iteritems():
            kList.append(k)
            misRateList.append(1.0 - 1.0/k*misClassNum)

        fig = plt.figure(saveFigPath)
        plt.plot(kList, misRateList, 'r--')
        plt.title(saveFigPath)
        plt.xlabel('k Num.')
        plt.ylabel('Misclassified Rate')
        plt.legend(saveFigPath)
        plt.grid(True)
        plt.savefig(saveFigPath)
        plt.show()

################################### PART3 TEST ########################################
# 例子 
开发者ID:ysh329,项目名称:statistical-learning-methods-note,代码行数:21,代码来源:kNN.py

示例8: plot_performance_profiles

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_performance_profiles(problems, solvers):
    """
    Plot performance profiles in matplotlib for specified problems and solvers
    """
    # Remove OSQP polish solver
    solvers = solvers.copy()
    for s in solvers:
        if "polish" in s:
            solvers.remove(s)

    df = pd.read_csv('./results/%s/performance_profiles.csv' % problems)
    plt.figure(0)
    for solver in solvers:
        plt.plot(df["tau"], df[solver], label=solver)
    plt.xlim(1., 10000.)
    plt.ylim(0., 1.)
    plt.xlabel(r'Performance ratio $\tau$')
    plt.ylabel('Ratio of problems solved')
    plt.xscale('log')
    plt.legend()
    plt.grid()
    plt.show(block=False)
    results_file = './results/%s/%s.png' % (problems, problems)
    print("Saving plots to %s" % results_file)
    plt.savefig(results_file) 
开发者ID:oxfordcontrol,项目名称:osqp_benchmarks,代码行数:27,代码来源:benchmark.py

示例9: plot

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot(traj, x, y, **kwargs):
    """ Create a matplotlib plot of property x against property y

    Args:
        x,y (str): names of the properties
        **kwargs (dict): kwargs for :meth:`matplotlib.pylab.plot`

    Returns:
        List[matplotlib.lines.Lines2D]: the lines that were plotted

    """
    from matplotlib import pylab
    xl = yl = None
    if type(x) is str:
        strx = x
        x = getattr(traj, x)
        xl = '%s / %s' % (strx, getattr(x, 'units', 'dimensionless'))
    if type(y) is str:
        stry = y
        y = getattr(traj, y)
        yl = '%s / %s' % (stry, getattr(y, 'units', 'dimensionless'))
    plt = pylab.plot(x, y, **kwargs)
    pylab.xlabel(xl); pylab.ylabel(yl); pylab.grid()
    return plt 
开发者ID:Autodesk,项目名称:notebook-molecular-visualization,代码行数:26,代码来源:trajectory.py

示例10: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_pr(auc_score, name, phase, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" %
                  (filename, phase)), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例11: plot_log

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_log():
    pylab.clf()
    pylab.figure(num=None, figsize=(6, 5))

    x = np.arange(0.001, 1, 0.001)
    y = np.log(x)

    pylab.title('Relationship between probabilities and their logarithm')
    pylab.plot(x, y)
    pylab.grid(True)
    pylab.xlabel('P')
    pylab.ylabel('log(P)')
    filename = 'log_probs.png'
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例12: plot_feat_hist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_feat_hist(data_name_list, filename=None):
    pylab.clf()
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Density')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, facecolor='green', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:32,代码来源:utils.py

示例13: plot_bias_variance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_bias_variance(data_sizes, train_errors, test_errors, name):
    pylab.clf()
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Data set size')
    pylab.ylabel('Error')
    pylab.title("Bias-Variance for '%s'" % name)
    pylab.plot(
        data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1)
    pylab.legend(["train error", "test error"], loc="upper right")
    pylab.grid()
    pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png")) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:13,代码来源:utils.py

示例14: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_pr(auc_score, name, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC = %0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "pr_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例15: plot_log

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import grid [as 别名]
def plot_log():
    pylab.clf()

    x = np.arange(0.001, 1, 0.001)
    y = np.log(x)

    pylab.title('Relationship between probabilities and their logarithm')
    pylab.plot(x, y)
    pylab.grid(True)
    pylab.xlabel('P')
    pylab.ylabel('log(P)')
    filename = 'log_probs.png'
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:15,代码来源:utils.py


注:本文中的matplotlib.pylab.grid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。