本文整理汇总了Python中matplotlib.pylab.figure方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.figure方法的具体用法?Python pylab.figure怎么用?Python pylab.figure使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.figure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_png_chess_dp_vertex
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def generate_png_chess_dp_vertex(self):
"""Produces pictures of the dominant product vertex a chessboard convention"""
import matplotlib.pylab as plt
plt.ioff()
dab2v = self.get_dp_vertex_doubly_sparse()
for i, ab in enumerate(dab2v):
fname = "chess-v-{:06d}.png".format(i)
print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname)
if type(ab) != 'numpy.ndarray': ab = ab.toarray()
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.set_aspect('equal')
plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean)
plt.colorbar()
plt.savefig(fname)
plt.close(fig)
示例2: error_bar_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def error_bar_plot(experiment_data, results, title="", ylabel=""):
true_effect = experiment_data.true_effects.mean()
estimators = list(results.keys())
x = list(estimators)
y = [results[estimator].ate for estimator in estimators]
cis = [
np.array(results[estimator].ci) - results[estimator].ate
if results[estimator].ci is not None
else [0, 0]
for estimator in estimators
]
err = [[abs(ci[0]) for ci in cis], [abs(ci[1]) for ci in cis]]
plt.figure(figsize=(12, 5))
(_, caps, _) = plt.errorbar(x, y, yerr=err, fmt="o", markersize=8, capsize=5)
for cap in caps:
cap.set_markeredgewidth(2)
plt.plot(x, [true_effect] * len(x), label="True Effect")
plt.legend(fontsize=12, loc="lower right")
plt.ylabel(ylabel)
plt.title(title)
示例3: plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot(self, words, num_points=None):
if not num_points:
num_points = len(words)
embeddings = self.get_words_embeddings(words)
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
two_d_embeddings = tsne.fit_transform(embeddings[:num_points, :])
assert two_d_embeddings.shape[0] >= len(words), 'More labels than embeddings'
pylab.figure(figsize=(15, 15)) # in inches
for i, label in enumerate(words[:num_points]):
x, y = two_d_embeddings[i, :]
pylab.scatter(x, y)
pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points',
ha='right', va='bottom')
pylab.show()
示例4: figure_plotting_space
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def figure_plotting_space():
"""
defines the plotting space
"""
fig = plt.figure(figsize=(10,10))
bar_height = 0.04
mini_gap = 0.03
gap = 0.05
graph_height = 0.24
axH = fig.add_axes([0.1,gap+3*graph_height+2.5*mini_gap,0.87,bar_height])
axS = fig.add_axes([0.1,gap+2*graph_height+2*mini_gap,0.87,graph_height])
axV = fig.add_axes([0.1,gap+graph_height+mini_gap,0.87,graph_height])
return fig, axH, axS, axV
示例5: plot_clustering
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None):
pylab.figure(num=None, figsize=(8, 6))
if km:
pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y))))
else:
pylab.scatter(x, y, s=50)
pylab.title(title)
pylab.xlabel("Occurrence word 1")
pylab.ylabel("Occurrence word 2")
pylab.autoscale(tight=True)
pylab.ylim(ymin=0, ymax=1)
pylab.xlim(xmin=0, xmax=1)
pylab.grid(True, linestyle='-', color='0.75')
return pylab
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:plot_kmeans_example.py
示例6: plot_entropy
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_entropy():
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
title = "Entropy $H(X)$"
pylab.title(title)
pylab.xlabel("$P(X=$coin will show heads up$)$")
pylab.ylabel("$H(X)$")
pylab.xlim(xmin=0, xmax=1.1)
x = np.arange(0.001, 1, 0.001)
y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
pylab.plot(x, y)
# pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
# [0,1,2,3,4]])
pylab.autoscale(tight=True)
pylab.grid(True)
filename = "entropy_demo.png"
pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py
示例7: plot_roc
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
pylab.clf()
pylab.figure(num=None, figsize=(5, 4))
pylab.grid(True)
pylab.plot([0, 1], [0, 1], 'k--')
pylab.plot(fpr, tpr)
pylab.fill_between(fpr, tpr, alpha=0.5)
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('False Positive Rate')
pylab.ylabel('True Positive Rate')
pylab.title('ROC curve (AUC = %0.2f) / %s' %
(auc_score, label), verticalalignment="bottom")
pylab.legend(loc="lower right")
filename = name.replace(" ", "_")
pylab.savefig(
os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py
示例8: create_figure
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def create_figure(im_size, figsize_max=MAX_FIGURE_SIZE):
""" create an empty figure of image size maximise maximal size
:param tuple(int,int) im_size:
:param float figsize_max:
:return:
>>> fig, ax = create_figure((100, 150))
>>> isinstance(fig, plt.Figure)
True
"""
assert len(im_size) >= 2, 'not valid image size - %r' % im_size
size = np.array(im_size[:2])
fig_size = size[::-1] / float(size.max()) * figsize_max
fig, ax = plt.subplots(figsize=fig_size)
return fig, ax
示例9: export_figure
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def export_figure(path_fig, fig):
""" export the figure and close it afterwords
:param str path_fig: path to the new figure image
:param fig: object
>>> path_fig = './sample_figure.jpg'
>>> export_figure(path_fig, plt.figure())
>>> os.remove(path_fig)
"""
assert os.path.isdir(os.path.dirname(path_fig)), \
'missing folder "%s"' % os.path.dirname(path_fig)
fig.subplots_adjust(left=0., right=1., top=1., bottom=0.)
logging.debug('exporting Figure: %s', path_fig)
fig.savefig(path_fig)
plt.close(fig)
示例10: plot_total_dos
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_total_dos(self, **kwargs):
"""
Plots the total DOS
Args:
**kwargs: Variables for matplotlib.pylab.plot customization (linewidth, linestyle, etc.)
Returns:
matplotlib.pylab.plot
"""
try:
import matplotlib.pylab as plt
except ImportError:
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(6, 4))
ax1 = fig.add_subplot(111)
ax1.set_xlabel("E (eV)", fontsize=14)
ax1.set_ylabel("DOS", fontsize=14)
plt.fill_between(self.energies, self.t_dos, **kwargs)
return plt
示例11: __init__
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def __init__(self, rect, wtype, *args, **kwargs):
"""
Creates a matplotlib.widgets widget
:param rect: The rectangle of the position [left, bottom, width, height] in relative figure coordinates
:param wtype: A type from matplotlib.widgets, eg. Button, Slider, TextBox, RadioButtons
:param args: Positional arguments passed to the widget
:param kwargs: Keyword arguments passed to the widget and events used for the widget
eg. if wtype is Slider, on_changed=f can be used as keyword argument
"""
self.ax = plt.axes(rect)
events = {}
for k in list(kwargs.keys()):
if k.startswith('on_'):
events[k] = kwargs.pop(k)
self.object = wtype(self.ax, *args, **kwargs)
for k in events:
if hasattr(self.object, k):
getattr(self.object, k)(events[k])
示例12: visualize_voxel_spectral
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def visualize_voxel_spectral(points, vis_size=128):
"""Function to visualize voxel (spectral)."""
points = np.rint(points)
points = np.swapaxes(points, 0, 2)
fig = p.figure(figsize=(1, 1), dpi=vis_size)
verts, faces = measure.marching_cubes_classic(points, 0, spacing=(0.1, 0.1, 0.1))
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(
verts[:, 0], verts[:, 1], faces, verts[:, 2], cmap='Spectral_r', lw=0.1)
ax.set_axis_off()
fig.tight_layout(pad=0)
fig.canvas.draw()
data = np.fromstring(
fig.canvas.tostring_rgb(), dtype=np.uint8, sep='').reshape(
vis_size, vis_size, 3)
p.close('all')
return data
示例13: plot_pr
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_pr(auc_score, precision, recall, label=None, figure_path=None):
"""绘制R/P曲线"""
try:
from matplotlib import pylab
pylab.figure(num=None, figsize=(6, 5))
pylab.xlim([0.0, 1.0])
pylab.ylim([0.0, 1.0])
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
pylab.fill_between(recall, precision, alpha=0.5)
pylab.grid(True, linestyle='-', color='0.75')
pylab.plot(recall, precision, lw=1)
pylab.savefig(figure_path)
except Exception as e:
print("save image error with matplotlib")
pass
示例14: plot_pr_curve
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plot_pr_curve(pr_curve_dml, pr_curve_base, title):
"""
Function that plots the PR-curve.
Args:
pr_curve: the values of precision for each recall value
title: the title of the plot
"""
plt.figure(figsize=(16, 9))
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_base, color='r', marker='o', linewidth=3, markersize=10)
plt.plot(np.arange(0.0, 1.05, 0.05),
pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10)
plt.grid(True, linestyle='dotted')
plt.xlabel('Recall', color='k', fontsize=27)
plt.ylabel('Precision', color='k', fontsize=27)
plt.yticks(color='k', fontsize=20)
plt.xticks(color='k', fontsize=20)
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(title, color='k', fontsize=27)
plt.tight_layout()
plt.show()
示例15: plotKChart
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import figure [as 别名]
def plotKChart(self, misClassDict, saveFigPath):
kList = []
misRateList = []
for k, misClassNum in misClassDict.iteritems():
kList.append(k)
misRateList.append(1.0 - 1.0/k*misClassNum)
fig = plt.figure(saveFigPath)
plt.plot(kList, misRateList, 'r--')
plt.title(saveFigPath)
plt.xlabel('k Num.')
plt.ylabel('Misclassified Rate')
plt.legend(saveFigPath)
plt.grid(True)
plt.savefig(saveFigPath)
plt.show()
################################### PART3 TEST ########################################
# 例子