当前位置: 首页>>代码示例>>Python>>正文


Python pylab.clf方法代码示例

本文整理汇总了Python中matplotlib.pylab.clf方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.clf方法的具体用法?Python pylab.clf怎么用?Python pylab.clf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.pylab的用法示例。


在下文中一共展示了pylab.clf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_feat_importance

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:utils.py

示例2: plot_entropy

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_entropy():
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))

    title = "Entropy $H(X)$"
    pylab.title(title)
    pylab.xlabel("$P(X=$coin will show heads up$)$")
    pylab.ylabel("$H(X)$")

    pylab.xlim(xmin=0, xmax=1.1)
    x = np.arange(0.001, 1, 0.001)
    y = -x * np.log2(x) - (1 - x) * np.log2(1 - x)
    pylab.plot(x, y)
    # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in
    # [0,1,2,3,4]])

    pylab.autoscale(tight=True)
    pylab.grid(True)

    filename = "entropy_demo.png"
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:demo_mi.py

示例3: plot_confusion_matrix

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_confusion_matrix(cm, genre_list, name, title):
    pylab.clf()
    pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
    ax = pylab.axes()
    ax.set_xticks(range(len(genre_list)))
    ax.set_xticklabels(genre_list)
    ax.xaxis.set_ticks_position("bottom")
    ax.set_yticks(range(len(genre_list)))
    ax.set_yticklabels(genre_list)
    pylab.title(title)
    pylab.colorbar()
    pylab.grid(False)
    pylab.show()
    pylab.xlabel('Predicted class')
    pylab.ylabel('True class')
    pylab.grid(False)
    pylab.savefig(
        os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:20,代码来源:utils.py

示例4: plot_roc

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_roc(auc_score, name, tpr, fpr, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.plot([0, 1], [0, 1], 'k--')
    pylab.plot(fpr, tpr)
    pylab.fill_between(fpr, tpr, alpha=0.5)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('False Positive Rate')
    pylab.ylabel('True Positive Rate')
    pylab.title('ROC curve (AUC = %0.2f) / %s' %
                (auc_score, label), verticalalignment="bottom")
    pylab.legend(loc="lower right")
    filename = name.replace(" ", "_")
    pylab.savefig(
        os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:19,代码来源:utils.py

示例5: plot_true_and_augmented_data

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_true_and_augmented_data(sample,noised_sample,label,n_examples):
    output_dir = os.path.split(FLAGS.output)[0]
    # Save augmented data
    plt.clf()
    fig, ax = plt.subplots(3,1)
    for t in range(noised_sample.shape[1]):
        ax[t].plot(noised_sample[:,t])
        ax[t].set_xlabel('time (samples)')
        ax[t].set_ylabel('amplitude')
    ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label))
    plt.savefig(os.path.join(output_dir, "augmented_data",
                            'augmented_{:03d}.pdf'.format(n_examples)))
    plt.close()

    # Save true data
    plt.clf()
    fig, ax = plt.subplots(3,1)
    for t in range(sample.shape[1]):
        ax[t].plot(sample[:,t])
        ax[t].set_xlabel('time (samples)')
        ax[t].set_ylabel('amplitude')
    ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label))
    plt.savefig(os.path.join(output_dir, "true_data",
                            'true__{:03d}.pdf'.format(n_examples)))
    plt.close() 
开发者ID:tperol,项目名称:ConvNetQuake,代码行数:27,代码来源:data_augmentation.py

示例6: test_normality_increase_lambert

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def test_normality_increase_lambert(self):
        # Generate random data and check that it is more normal after inference
        for i, y in enumerate([np.random.standard_cauchy(size=ns), experimental_data]):
            print('Distribution %d' % i)
            print('Before')
            print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(y)[0], shapiro(y)[0])).expandtabs(30))
            stats.probplot(y, dist="norm", plot=plt)
            plt.savefig(os.path.join(self.test_dir, '%d_before.png' % i))
            plt.clf()
    
            tau = g.igmm(y)
            x = g.w_t(y, tau)
            print('After')
            print(('anderson: %0.3f\tshapiro: %0.3f' % (anderson(x)[0], shapiro(x)[0])).expandtabs(30))
            stats.probplot(x, dist="norm", plot=plt)
            plt.savefig(os.path.join(self.test_dir, '%d_after.png' % i))
            plt.clf() 
开发者ID:gregversteeg,项目名称:gaussianize,代码行数:19,代码来源:test_gaussianize.py

示例7: check_HDF5

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def check_HDF5(size=64):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        for i in range(data_color.shape[0]):
            plt.figure()
            img = data_color[i, :, :, :].transpose(1,2,0)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
开发者ID:tdeboissiere,项目名称:DeepLearningImplementations,代码行数:19,代码来源:make_dataset.py

示例8: check_HDF5

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def check_HDF5(jpeg_dir, nb_channels):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    file_name = os.path.basename(jpeg_dir.rstrip("/"))
    hdf5_file = os.path.join(data_dir, "%s_data.h5" % file_name)

    with h5py.File(hdf5_file, "r") as hf:
        data_full = hf["train_data_full"]
        data_sketch = hf["train_data_sketch"]
        for i in range(data_full.shape[0]):
            plt.figure()
            img = data_full[i, :, :, :].transpose(1,2,0)
            img2 = data_sketch[i, :, :, :].transpose(1,2,0)
            img = np.concatenate((img, img2), axis=1)
            if nb_channels == 1:
                plt.imshow(img[:, :, 0], cmap="gray")
            else:
                plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
开发者ID:tdeboissiere,项目名称:DeepLearningImplementations,代码行数:26,代码来源:make_dataset.py

示例9: check_HDF5

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def check_HDF5(size):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "lfw_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        label = hf["labels"]
        attrs = label.attrs["label_names"]
        for i in range(data_color.shape[0]):
            plt.figure(figsize=(20, 10))
            img = data_color[i, :, :, :].transpose(1,2,0)[:, :, ::-1]
            # Get the 10 labels with highest values
            idx = label[i].argsort()[-10:]
            plt.xlabel(",  ".join(attrs[idx]), fontsize=12)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
开发者ID:tdeboissiere,项目名称:DeepLearningImplementations,代码行数:24,代码来源:make_dataset.py

示例10: save_state_images

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def save_state_images(frame_idx, states, net, device="cpu", max_states=200):
    ofs = 0
    p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
    for batch in np.array_split(states, 64):
        states_v = torch.tensor(batch).to(device)
        action_prob = net.apply_softmax(net(states_v)).data.cpu().numpy()
        batch_size, num_actions, _ = action_prob.shape
        for batch_idx in range(batch_size):
            plt.clf()
            for action_idx in range(num_actions):
                plt.subplot(num_actions, 1, action_idx+1)
                plt.bar(p, action_prob[batch_idx, action_idx], width=0.5)
            plt.savefig("states/%05d_%08d.png" % (ofs + batch_idx, frame_idx))
        ofs += batch_size
        if ofs >= max_states:
            break 
开发者ID:PacktPublishing,项目名称:Deep-Reinforcement-Learning-Hands-On,代码行数:18,代码来源:07_dqn_distrib.py

示例11: save_transition_images

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def save_transition_images(batch_size, predicted, projected, next_distr, dones, rewards, save_prefix):
    for batch_idx in range(batch_size):
        is_done = dones[batch_idx]
        reward = rewards[batch_idx]
        plt.clf()
        p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
        plt.subplot(3, 1, 1)
        plt.bar(p, predicted[batch_idx], width=0.5)
        plt.title("Predicted")
        plt.subplot(3, 1, 2)
        plt.bar(p, projected[batch_idx], width=0.5)
        plt.title("Projected")
        plt.subplot(3, 1, 3)
        plt.bar(p, next_distr[batch_idx], width=0.5)
        plt.title("Next state")
        suffix = ""
        if reward != 0.0:
            suffix = suffix + "_%.0f" % reward
        if is_done:
            suffix = suffix + "_done"
        plt.savefig("%s_%02d%s.png" % (save_prefix, batch_idx, suffix)) 
开发者ID:PacktPublishing,项目名称:Deep-Reinforcement-Learning-Hands-On,代码行数:23,代码来源:07_dqn_distrib.py

示例12: plot_pr

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_pr(auc_score, name, phase, precision, recall, label=None):
    pylab.clf()
    pylab.figure(num=None, figsize=(5, 4))
    pylab.grid(True)
    pylab.fill_between(recall, precision, alpha=0.5)
    pylab.plot(recall, precision, lw=1)
    pylab.xlim([0.0, 1.0])
    pylab.ylim([0.0, 1.0])
    pylab.xlabel('Recall')
    pylab.ylabel('Precision')
    pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label))
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" %
                  (filename, phase)), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例13: show_most_informative_features

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def show_most_informative_features(vectorizer, clf, n=20):
    c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names()))
    top = zip(c_f[:n], c_f[:-(n + 1):-1])
    for (c1, f1), (c2, f2) in top:
        print "\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2) 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:7,代码来源:utils.py

示例14: plot_log

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_log():
    pylab.clf()
    pylab.figure(num=None, figsize=(6, 5))

    x = np.arange(0.001, 1, 0.001)
    y = np.log(x)

    pylab.title('Relationship between probabilities and their logarithm')
    pylab.plot(x, y)
    pylab.grid(True)
    pylab.xlabel('P')
    pylab.ylabel('log(P)')
    filename = 'log_probs.png'
    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:16,代码来源:utils.py

示例15: plot_feat_hist

# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import clf [as 别名]
def plot_feat_hist(data_name_list, filename=None):
    pylab.clf()
    num_rows = 1 + (len(data_name_list) - 1) / 2
    num_cols = 1 if len(data_name_list) == 1 else 2
    pylab.figure(figsize=(5 * num_cols, 4 * num_rows))

    for i in range(num_rows):
        for j in range(num_cols):
            pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j)
            x, name = data_name_list[i * num_cols + j]
            pylab.title(name)
            pylab.xlabel('Value')
            pylab.ylabel('Density')
            # the histogram of the data
            max_val = np.max(x)
            if max_val <= 1.0:
                bins = 50
            elif max_val > 50:
                bins = 50
            else:
                bins = max_val
            n, bins, patches = pylab.hist(
                x, bins=bins, normed=1, facecolor='green', alpha=0.75)

            pylab.grid(True)

    if not filename:
        filename = "feat_hist_%s.png" % name

    pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:32,代码来源:utils.py


注:本文中的matplotlib.pylab.clf方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。